
Equipe Problèmes Inverses en électrophysiologie CARDiaque 
(EPICARD) 

LIRIMA scientific days

EQUIPE ASSOCIEE Epicard 
INRIA Bordeaux Sud-Ouest-LAMSIN

Paris, September 18th 2018

N. Zemzemi & M. Bellassoued



EPICARD Paris, September 18th 20182

EPICARD members
 

• Nejib Zemzemi (CR, co-Head) 

• Yves Coudière (Prof) 

• Jacques Henry (Emeritus)

From Inria

 

• Mourad Bellassoued (Prof, 
co-Head) 

• Nabil Gmati (Prof) 

• Amel Ben Abda (Prof) 

• Moncef Mahjoub (TA) 

• Moez Kallel (MdC)

From Lamsin

• Fadhel Jday (TA) 

• Yassine Abidi (Phd student) 

• Rabeb Chamekh (Phd student)

• Mostafa Bendahmane  (MdC)

• Amal Karoui (Phd student)

• Pauline Megerditichan (Eng)



3

 From MohamedV Univ

• Rajae Aboulaich (Prof) 

• Elmahdi Elguarmah (TA) 

• Najib Fikal (PhD) 

•  Keltoum Chahour (Phd Students)

EPICARD collaborators

From Inria Sophia-Antipolis  

• Abderrahmane Habbel (MdC)

EPICARD Paris, September 18th 2018



4

• CVDs are the main cause of mortality  in Europe with more than 4.2 million death 
per year and cost more than 192 Md €.

• Cardiovascular diseases (CVDs) are killing more than 17.1 million people worldwide. 

World Health  Organization (WHO) 

•  Numerical simulation is a powerful tool to clarify some misunderstood                         
phenomena.

•  Build virtual data base that can help for training new medical tools 

• Predict the toxicity of  some treatments 

• Scientific challenge: dealing with new problems

General context

EPICARD Paris, September 18th 2018
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• IHU-LIRYC investment for the future program (40M€)

Local context in Bordeaux

• CHU-Bordeaux: Pioneers in cardiac surgery / radio frequency ablation

• Non invasive cardiac imaging system is under assessment in the CHU

• In vitro and in vivo experiments are now available in the IHU for validation

• Medical doctors (Michel Haissaguere) are convinced by the role of the 

in silico model in the improvement of the new technology 

• Carmen project is part of LIRYC institute

5EPICARD Paris, September 18th 2018



EPICARD Paris, September 18th 2018

Electrocardiography system: EcVue 

• Electrodes Vest • CT Scan with the vest

• Medical decision and 
intervention 

• Measuring signals and 
mapping the inverse solution
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Clinical Use

• 252-electrodes Vest

• EcVue System form CardioInsight

• Patient examination 

• Cardiac resynchronization therapy  

• Atrial fibrillation treatment 

• Focal Arrhythmia (AT, VT, WPW,…) 

• Ventricular Fibrillation 

• ECGI has been used for the treatment of:
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Clinical Use (CRT)

• Use of ECGI for CRT guidance 

• Real time observation of the conduction patterns before during and following insertion of the device



EPICARD Paris, September 18th 2018

Clinical Use (AF ablation)

• Use of ECGI for atrial fibrillation treatment  

• Temporal cycle length • Phase mapping • Foci location 
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Goals of the ECGI procedure

• Detect the pathway of the electrical wave on the heart surface

• Localize in space the origin of arrhythmia 

• Help medical doctor  for a better diagnosis of the heart condition

• Guide the medical doctors during interventions (RFA)
• Better understanding of the mechanism of some pathologies

Medical goals

Mathematical and numerical goals

• Mathematical formulation of the medical issues 

• Treat fundamental questions

• Design and participate in building technical solutions 
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    Journal Papers

• 1 Mathematical biosciences

 International conferences + proceedings

• 1 papers FIMH 2015

• Computing in cardiology 1 to 2 papers each year 

EPICARD Production 2015-2017

• 2 Inverse problem papers

• 2 Mathematical modeling of natural Phenomena

• 1 papers International Symposium on Biomedical Imaging 2016

International conferences without proceedings  

• Picof 2016:  5 abstracts
• Colloque international du laboratoire Euro-maghrébin de 

mathématiques et leurs interactions
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  African Conferences

• CARI 2016:  2 papers

EPICARD Production 2015-2017

• TamTam 2015, 3 talks.

• TamTam 2017:  6 talks 

Local presentations

• LIRYC scientific days: 2 to 3 posters each year. IHU-LIRYC

• Seminars at the IMB.

• Seminars at Inria-Bordeaux.

• Seminars at LAMSIN.

• Journées de Bio-mathématique et Calcul Numérique, 2 to 3 
talks each year.



EPICARD Paris, September 18th 2018

  Five major publications

• [1] Y Abidi, M Bellassoued, M Moncef, N Zemzemi. On the identication of multiple 
space dependent ionic parameters in cardiac electrophysiology modelling. Journal 
of Inverse Problems (2018).

EPICARD Production 2015-2017

• [2] S. Aouadi, W. Mbarki and N. Zemzemi. Stability analysis of decoupled 
timestepping schemes for the specialized conduction system/myocardium coupled 
problem in cardiology. Mathematical Modelling of Natural Phenomena. (2017).

• [3] J. Lassoued, M. Mahjoub, N. Zemzemi, Stability results for the parameter 
identication inverse problem in cardiac electrophysiology, Inverse Problems 32, 
2016, p. 1-31, [doi:10.1088/0266-5611/32/11/115002], [hal:hal-01399373].

• [4] R. Aboulaich, N. Fikal, E. M. EL Guarmah, N. Zemzemi(2016). Stochastic Finite 
Element Method for torso conductivity uncertainties quantication in 
electrocardiography inverse problem. Mathematical Modelling of Natural 
Phenomena, 11(2), 1-19.

• [5] C. Corrado, J. Lassoued, M. Mahjoub, N. Zemzemi(2015), Stability analysis of the 
POD reduced order method for solving the bidomain model in cardiac 
electrophysiology. Mathematical Biosciences,, [doi:10.1016/j.mbs.2015.12.005].
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EPICARD Production 2015-2017
PHD thesis:
• Jamila Lassoued. Quelques approches mathématiques en 

électrophysiologie cardiaque: Problèmes inverses et méthodes 
d’ordre réduit. Ph.D thesis defended on 20/07/2016  

• Najib Fikal: Quantification d’incertitudes en électrocardiographie par 
la méthode éléments finis stochastique. Ph.D thesis  defended on 
July 22nd 2017. 

•  Wajih M’Barki. Modélisation et analyse d’un problème d’interaction 
en biomathématiques : couplage en électrophysiologie cardiaque. 
Ph.D thesis defended on July 28th, 2017.

  Master thesis
• Ronald-Reagan Moussitou. Problème inverse en  électrocardiographie: 

Théorie de la factorisation. Thesis  defended on 13/09/2016.

• Karoui Amal. Méthodes numériques pour la resolution du problème 
inverse en électrocardiographie. PFE  defended on  11/09/2017.
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EPICARD Production 2015-2017

• R. Aboulaich organized  workshop-biomath in Rabat, on 
November 11th-12th 2015.

• N. Zemzemi organized a mini-symposium intitled “Imaging and 
inverse modeling” in PICOF. June 1st-3rd 2016, Autrans, France.

Events Organizations

• N. Gmati Co-organized CIMPA research school 2016: 
Mathématiques pour la biologie. From 04/10 to 10/10. Tunis, 
Tunisia.

• N. Gmati organized CARI 2016. From 11/10 to 14/10. Tunis 
Tunisia 

• Carmen Team members participate each year in the organization 
of the LIRYC scientific days

  Scientific diffusion
• M. Mahjoub and N. Zemzemi gave courses in CIMPA schools 2016  

• Master + Doctoral courses on the topic at FST each year.
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    Journal Papers

 International conferences + proceedings

• Computing in cardiology 2018, Maastricht, Netherland

EPICARD Production 2018

• In 2018: we are organizing a special issue in the MMNP Journal 
named: «Mathematical modeling in cardiac electrophysiology »: 
Five papers from EPICARD members has been submitted, four are 
already accepted. 

  

• Picof 2018: 3 abstracts presentations, Beyrouth Libanon

• One paper has been submitted to Frontiers in Physiology

International conferences without proceedings

• One paper has been accepted in Inverse Problems.

• 9th International Conference "Inverse Problems: Modeling and 
Simulation" (2018): Malte, Italy 
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EPICARD Production
Running Ph.Ds:

• Rabeb Chamekh. Nash game theory applied to the inverse problem 
in electrocardiography Ph.D defense expected in 2019.  

• Yassine Abidi: Parameters identification problems in cardiac 
electrophysiology modeling. Ph.D defense expected in 2019.

• Amal Karoui: Nouvelles approaches en imagerie 
electrocardiographique. Started on October 2017. The 
defence is expected in 2020.



EPICARD Paris, September 18th 2018

  

Visits financial contributions

• Each year 2 to 3 Ph.D. students from Tunisia and Morocco visit 
Inria 1 month to 4 months period

• Each year 4 to 5 senior members visits either in Tunis or in 
Bordeaux. One or two weeks visits. 

Scientific Visits

• Inria 10,000€/year
  Financial contributions

• Université Mohammed V: travel fees 1,000 to 1,5000€/year

• LAMSIN: Internship for Ph.D. students + travel fees ~5,000 to 
6,000€/year

• In 2018: Phd students Y. Abidi, R. Chamekh and K. Chakour have 
been visiting Inria. 

• In 2018: LAMSIN and MESRS, supported 4 months visit for Phd 
students Y. Abidi, R. Chamekh
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Major results 

• Optimal control formulation of the ECGI problem 

• Invariant embedding method in 3D 

• Incomplete data on the accessible boundary 

• Effect of neglecting conductivity heterogeneities 

• Quantification of the uncertainty of the ECGI solution with respect to 
conductivities uncertainty and noise on the data 

• Torso conductivities optimization in the forward problem. Combing ECGI-
inverse solution and conductivities optimization 

Contributions to the stationary formulation of the ECGI problem 

Contributions to the non-stationary inverse problem in ECGI 

• Theoretical results on parameters identification problems 

• Numerical methods for parameters estimation in cardiac electrophysiology 

• Reduced order modeling in cardiac electrophysiology
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Modelling in cardiac 
electrophysiology
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Main ingredients: 
Model for the electrical activity of the heart 
Torso model 
Heart-torso interface conditions

organetissuecell

ECG modeling: from cell to body surface
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intra-cellular  
medium

extra-cellular  
medium

membrane

ue

ui

Vm = ui � uetransmembrane potential: 

intra-cellular potential: 

extra-cellular potential:

ui

ue

(Hodkin-Huxley 52, Noble 62, Beeler-Reuter 77, Luo-Rudy91,...,Grandi2010)

electric analog
ui

Cm

ue

Ionic model (ODE):
�
⌅⇤

⌅⇥

Cm
dVm

dt
+ iion(Vm, w) = Iapp

dw

dt
+ G(Vm, w) = 0

Modeling: cell scale
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Multiple space dependent parameter Identification 
inverse problem

(M. Veneroni 2009)

• Monodomain model: dynamic model

where, the ionic model is a generalization of the H.H 
physiologically detailed ionic 
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where µ
1

, µ
3

, µ
4

, vn are non-negative constants and µ
2

, µ
5

are positive constants.

The dynamics of the ionic concentration variables z is described by the additional system of ordinary
differential equations:

(2.5) Btzi “ Gip%̄, v,w, zq :“ ´Jip%̄, v,w, log ziq ` Hip%̄, v,w, zq, i “ 1, . . . ,m,

where

(2.6) Ji P C

2pR˚
`,RˆRk ˆRq, 0 † g˚pwq § BJi

B⌧ p%̄, v,w, ⌧q § g˚pwq,
ˇ̌
ˇ̌BJi

Bv p%̄, v,w, 0q
ˇ̌
ˇ̌ § Lvpwq,

g˚, g˚, Lv belong to C

0pRk,R`q, and

(2.7) Hi P C

2pR˚
`,R ˆ Rk ˆ p0,`8qmq X LippR˚

`,R ˆ r0, 1sk ˆ p0,`8qmq.
We find many refinements models based on Hodgkin-Huxley model; for example, we recall here the follow-
ing models: Beeler-Reuter ([?], N “ 4, k “ 6,m “ 1), phase-I Luo-Rudy ([?], N “ 6, k “ 6,m “ 1),
phase-II Luo-Rudy ([?], N “ 10, k “ 6,m “ 5); see Hund and Rudy [?] for current developments.

2.2. Monodomain system with generalized ionic models. In this paper we consider the monodomain
system that describes the propagation of the electric wave in the heart gives by

(2.8)

$
’’’’’’&

’’’’’’%

Btv ´ divp�rvq “ Iapp ` Iionp%̄, v,w, zq in Q ” ⌦ ˆ p0, T q,
Btw “ F pv,wq in Q,

Btz “ Gp%̄, v,w, zq in Q,

�rv ¨ ⌫ “ 0 on ⌃ ” B⌦ ˆ p0, T q.

Here ⌦ Ä R3 is a bounded domain representing the cardiac tissue whose boundary B⌦. The time domain is
given by r0, T s. We also denote by Qt :“ ⌦ ˆ p0, tq, for any time t ° 0. The variable v, denotes the action
potential and � :“ �ip�i ` �eq´1�e is the bulk conductivity where �i and �e are the intra- and extracellular
conductivity tensors and ⌫ “ ⌫pxq “ p⌫

1

pxq, ⌫
2

pxq, ⌫
3

pxqq is the external unit normal vector to B⌦ at x.
The term Iapp is a given source function such that

(2.9) Iapp P Lpp0, T ;L2p⌦qq X H1p0, T ;L2p⌦qq, p ° 4,

and the ionic current Iion and the functions F and G depends of the considered ionic model.

We assume that the conductivities of the intracellular and extracellular �i,�e P
“
C

1p⌦q
‰
3ˆ3 are symmetric

and uniformly positive definite, i.e, there exist ↵i ° 0 and ↵e ° 0 such that,

(2.10) ⇠J�ipxq⇠ • ↵i |⇠|2 , ⇠J�epxq⇠ • ↵e |⇠|2 , @⇠ P R3,

and that the coefficients �jk, j, k “ 1, 2, 3 of the matrix �, satisfy the uniform ellipticity: there exists a
constant µ ° 0 such that

(2.11) µ |⇠|2 § ⇠J�⇠, @⇠ P R3.

We set

|ru|2� :“ �ru ¨ ru “
3ÿ

j,k“1

�jkBjuBku.

Fig. 8 Représentation schématique de la membrane cellulaire. Source: www.bio-energetik.
ca/images/cell_membrane.jpg

où sa conductivité est variable selon les conditions extérieures: en particulier il peut
être fermé.

La dépolarisation de la cellule est généralement causée par l’ouverture d’un canal
ionique. Ce canal est celui du sodium Na+. Son ouverture se fait dans le sens de son
gradient électrochimique, par conséquent, il ne nécessite aucun apport d’énergie de
la cellule. Ce genre de transport ionique est appelé transport passif. L’ouverture d’un
canal de sodium provoque la création d’un courant ionique iNa de l’ordre du pico-
ampère (pA). Ce courant est proportionnel au gradient électrochimique du sodium
(Vm � ENa) et à une variable qui représente l’ouverture et la fermeture de ce canal
GNa. Le potentiel transmembranaire Vm est la différence entre le potentiel intra et
extra-cellulaire. Le potentiel électrochimique ENa est donné par la loi de Nernst

ENa =
RT
F

ln
[Na]e
[Na]i

, (1)

où [Na]e (respectivement [Na]i) est la concentration extra-cellulaire (respectivement
intra-cellulaire) de l’ion sodium Na+. Les constantes R, T et F indiquent respective-
ment, la constante de gaz parfait, la temperature et la constante de Faraday.

Le courant iNa d’ions Na+ à travers ce canal, décrit par Hodgkin et Huxley (voir
[HH52]) est donné par

iNa = GNa(Vm �ENa). (2)

Ce canal ionique n’est pas toujours ouvert. Sa fermeture et son ouverture suivent la
loi de conductivité des portes des canaux ioniques GNa qui peut être réprésentée de
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general Hodgkin-Huxley formalism [?] (HH) including the Beeler Reuter model [?] (BR) and the Luo-
Rudy I model [?] (LR I) which are one of the most popular ionic models in the cardiac electrophysiology
modeling community. Second, we present an approach and some conditions under which one could prove
the stability of the parameter identification problem for a large set of parameters at the same time.

The paper is organized as follows. In the next section, we briefly recall the general structure of cardiac
cellular membrane models describing the transmembrane potential and the ionic exchange at the cell mem-
brane. Then we present the monodomain models describing the electrical wave propagation and recall some
the existence, uniqueness and regularity results that have been shown in [?]. These results would help us
in the stability analysis. In section §3, we announce the main stability result including the conditions we
need for the identification of multiple parameters. The proof of the main result is divided into two sec-
tions. In section §4, we prove the global Carleman inequality for the reaction-diffusion system. Most of the
non-classical parts of the proof of the main result are presented in section §5 where we prove the stability
estimate of conductances parameters.

2. MATHEMATICAL MODELS FOR THE ELECTRICAL WAVE PROPAGATION

In this section, we first present the general structure of physiologically-detailed cardiac cellular membrane
models that we will use in this paper. Then we introduce the monodomin model coupling a reaction diffusion
parabolic equation to the physiological ODE system.

2.1. General structure of cardiac cellular membrane models. The ionic current throughout channels of
the membrane is modulated by the transmembrane potential v :“ ui ´ ue, which ui and ue are respectively
the intra- and extra-cellular potentials, by gating variables w :“ pw

1

, . . . , wkq and by ionic intracellular
concentration variables z :“ pz

1

, . . . , zmq. In the membrane models, the ionic current Iion has the following
general structure:

(2.1) Iionp%̄, v,w, zq “
Nÿ

i“1

%̄iyipvq
kπ

j“1

w
pj,i
j pv ´ Eipzqq,

where N is the number of ionic currents, %̄i is the maximal conductance associated with the ith current, yi
is a gating function depending only on the membrane potentiel v, pj,i are positive integers exponents and Ei

is the reversal potential for the ith current Ii, which is the related equilibrium (Nernst) potential and is given
by

(2.2) Eipzq “ �i log

ˆ
ze
zi

˙
, z “ pz

1

, . . . , zmq,

where �i is a constant and zi, i “ 1, . . . ,m, are the intracellular concentrations. The constant ze denotes an
extracellular concentration. Here, we use the regularized form of the variable yipvq in hyperbolic functions
such as sh, ch, th introduced in [?]. In this case yipvq is a C

8 function with respect to the variable v for
i “ 1 ¨ ¨ ¨N .

The dynamics of the gating variable w is described in the Hodgkin-Huxley formalism by a system of
ordinary differential equations which when wj is a gating variable (0 § wj § 1) have the form

(2.3) Btwj “ Fjpv, wjq :“ ↵jpvqp1 ´ wjq ´ �jpvqwj , j “ 1, . . . , k,

where ↵j and �j are positive rational functions of exponentials in v. A general expression for both ↵j and
�j is given by

(2.4)
µ
1

eµ2pv´vnq ` µ
3

pv ´ vnq
1 ` µ

4

eµ5pv´vnq ,
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where µ
1

, µ
3

, µ
4

, vn are non-negative constants and µ
2

, µ
5

are positive constants.

The dynamics of the ionic concentration variables z is described by the additional system of ordinary
differential equations:

(2.5) Btzi “ Gip%̄, v,w, zq :“ ´Jip%̄, v,w, log ziq ` Hip%̄, v,w, zq, i “ 1, . . . ,m,

where

(2.6) Ji P C

2pR˚
`,RˆRk ˆRq, 0 † g˚pwq § BJi

B⌧ p%̄, v,w, ⌧q § g˚pwq,
ˇ̌
ˇ̌BJi

Bv p%̄, v,w, 0q
ˇ̌
ˇ̌ § Lvpwq,

g˚, g˚, Lv belong to C

0pRk,R`q, and

(2.7) Hi P C

2pR˚
`,R ˆ Rk ˆ p0,`8qmq X LippR˚

`,R ˆ r0, 1sk ˆ p0,`8qmq.
We find many refinements models based on Hodgkin-Huxley model; for example, we recall here the follow-
ing models: Beeler-Reuter ([?], N “ 4, k “ 6,m “ 1), phase-I Luo-Rudy ([?], N “ 6, k “ 6,m “ 1),
phase-II Luo-Rudy ([?], N “ 10, k “ 6,m “ 5); see Hund and Rudy [?] for current developments.

2.2. Monodomain system with generalized ionic models. In this paper we consider the monodomain
system that describes the propagation of the electric wave in the heart gives by

(2.8)

$
’’’’’’&

’’’’’’%

Btv ´ divp�rvq “ Iapp ` Iionp%̄, v,w, zq in Q ” ⌦ ˆ p0, T q,
Btw “ F pv,wq in Q,

Btz “ Gp%̄, v,w, zq in Q,

�rv ¨ ⌫ “ 0 on ⌃ ” B⌦ ˆ p0, T q.

Here ⌦ Ä R3 is a bounded domain representing the cardiac tissue whose boundary B⌦. The time domain is
given by r0, T s. We also denote by Qt :“ ⌦ ˆ p0, tq, for any time t ° 0. The variable v, denotes the action
potential and � :“ �ip�i ` �eq´1�e is the bulk conductivity where �i and �e are the intra- and extracellular
conductivity tensors and ⌫ “ ⌫pxq “ p⌫

1

pxq, ⌫
2

pxq, ⌫
3

pxqq is the external unit normal vector to B⌦ at x.
The term Iapp is a given source function such that

(2.9) Iapp P Lpp0, T ;L2p⌦qq X H1p0, T ;L2p⌦qq, p ° 4,

and the ionic current Iion and the functions F and G depends of the considered ionic model.

We assume that the conductivities of the intracellular and extracellular �i,�e P
“
C

1p⌦q
‰
3ˆ3 are symmetric

and uniformly positive definite, i.e, there exist ↵i ° 0 and ↵e ° 0 such that,

(2.10) ⇠J�ipxq⇠ • ↵i |⇠|2 , ⇠J�epxq⇠ • ↵e |⇠|2 , @⇠ P R3,

and that the coefficients �jk, j, k “ 1, 2, 3 of the matrix �, satisfy the uniform ellipticity: there exists a
constant µ ° 0 such that

(2.11) µ |⇠|2 § ⇠J�⇠, @⇠ P R3.

We set

|ru|2� :“ �ru ¨ ru “
3ÿ

j,k“1

�jkBjuBku.

• Solution existence for bidomain model 
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for numerical algorithms. In particular, by Cheng and Yamamoto [9] for example, a stability estimate gives
convergence rates of Tikhonov regularized solutions, which are widely used as approximating solutions to
the inverse problems.

Our inverse problem is related to determination of multiple ionic parameter of a non linear parabolic
reaction diffusion system coupled with an ordinary differential equations. To the authors’ best knowledge,
there are no papers on the determination of multiple coefficients of multiscale mathematical models in
cardiac electrophysiology, although we have an available methodology which was initiated by Bukhgeim and
Klibanov [7]. The determination of multiple coefficients requires repeated observations, and the application
of the method in [45] needs independent consideration.

Moreover, since we aim at the global stability in the whole domain ⌦ by means of data on an arbitrary
small subset ! Ä ⌦, we have to establish a relevant Carleman estimate (Theorem 3.1 below).

In order to formulate our results, we need to introduce the following notations: For a sequence functions
prv`, rw`,rz`q P H3p⌦q ˆ C

1p⌦qk ˆ C

1p⌦qm, we define the N ˆ N matrix ⇤ as follows

(3.1) ⇤prv`pxq, rw`pxq,rz`pxqq “

¨

˚̊
˚̊
˚̊
˝

S
1,1pxq S

2,1pxq . . . SN,1pxq
S
1,2pxq S

2,2pxq . . . SN,2pxq
...

...
. . .

...

S
1,N pxq S

2,N pxq . . . SN,N pxq

˛

‹‹‹‹‹‹‚
,

where

Si,`pxq “ yiprv`pxqq prv`pxq ´ Eiprz`pxqqq
kπ

j“1

p rw`qpj,ij pxq , 1 § `, i § N .

Let us fix constant M
0

° 0. We introduce an admissible set of unknown coefficients vector %̄ by

(3.2) A “
!
%̄ P H3p⌦qN , }%̄}l2pH3p⌦qN q § M

0

)
.

We obtain the following stability result.

Theorem 3.1. Let t
0

P p0, T q, ! be a subdomain of ⌦ and let %̄p2q P A be arbitrary fixed. We assume that
I`app P Lpp0, T ;L2p⌦qq X H1p0, T ;H2p⌦qq, p ° 4, 1 § ` § N , satisfy

(3.3) det

´
⇤

´
v

p2q
` px, t

0

q,wp2q
` px, t

0

q, zp2q
` px, t

0

q
¯¯

‰ 0, @x P ⌦.

Here pvp2q
` ,wp2q

` , zp2q
` q is the solution of (2.8) with %̄ “ %̄p2q and Iapp “ I`app. Furthermore, we assume that

(3.4) }vp2q
` }C0pr0,T s;C1p⌦qq ` }wp2q

` }C0pr0,T s;C1p⌦qq ` }zp2q
` }C0pr0,T s;C1p⌦qq § M,

for some positive M . Then there exists a constant C ° 0, depending only on T,⌦,!,M such that we have:

(3.5) }%̄p1q ´ %̄p2q}pL2p⌦qqN § C
´ Nÿ

`“1

}pvp1q
` ´ v

p2q
` q}H1p0,T ;H1p!0qq

` }pvp1q
` ´ v

p2q
` qp¨, t

0

q}H2p⌦q ` }pwp1q
` ´ wp2q

` qp¨, t
0

q}L2p⌦qk ` }pzp1q
` ´ zp2q

` qp¨, t
0

q}L2p⌦qm
¯
,

for all %̄p1q P A.

Multiple space dependent parameter Identification 
inverse problem

• Hypothesis on the ionic model

• Needed Observation: As many as the number of parameters to estimate.

• Column l corresponds to the l-th stimulus (frequency, position, duration, magnitude,…) 

• Rows i corresponds to the derivative of the ionic current to the i-th parameter

• Regularities on the RHS of the ionic model and on the stimuli function. (Also needed for existence) 

• Why Conductance parameter?

• Scaling factors of the different ionic currents,  built on sigle cell experiments

• Related to heart conditions (pathological conditions, gene mutation for instance)

• different physiological biomarkers are related to the conductances: Propagation velocity, repolarization 
times, … 
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Fig. 8 Représentation schématique de la membrane cellulaire. Source: www.bio-energetik.
ca/images/cell_membrane.jpg

où sa conductivité est variable selon les conditions extérieures: en particulier il peut
être fermé.

La dépolarisation de la cellule est généralement causée par l’ouverture d’un canal
ionique. Ce canal est celui du sodium Na+. Son ouverture se fait dans le sens de son
gradient électrochimique, par conséquent, il ne nécessite aucun apport d’énergie de
la cellule. Ce genre de transport ionique est appelé transport passif. L’ouverture d’un
canal de sodium provoque la création d’un courant ionique iNa de l’ordre du pico-
ampère (pA). Ce courant est proportionnel au gradient électrochimique du sodium
(Vm � ENa) et à une variable qui représente l’ouverture et la fermeture de ce canal
GNa. Le potentiel transmembranaire Vm est la différence entre le potentiel intra et
extra-cellulaire. Le potentiel électrochimique ENa est donné par la loi de Nernst

ENa =
RT
F

ln
[Na]e
[Na]i

, (1)

où [Na]e (respectivement [Na]i) est la concentration extra-cellulaire (respectivement
intra-cellulaire) de l’ion sodium Na+. Les constantes R, T et F indiquent respective-
ment, la constante de gaz parfait, la temperature et la constante de Faraday.

Le courant iNa d’ions Na+ à travers ce canal, décrit par Hodgkin et Huxley (voir
[HH52]) est donné par

iNa = GNa(Vm �ENa). (2)

Ce canal ionique n’est pas toujours ouvert. Sa fermeture et son ouverture suivent la
loi de conductivité des portes des canaux ioniques GNa qui peut être réprésentée de

Multiple space dependent parameter Identification 
inverse problem

(Abidi-Bellassoued-Mahjoub-NZ-2017)

• Stability result
10 YASSINE ABIDI1, MOURAD BELLASSOUED1, MONCEF MAHJOUB1 AND NEJIB ZEMZEMI2

Theorem 3.1. Let t
0

P p0, T q, ! be a subdomain of ⌦ and let %̄p2q P A be arbitrary fixed. We assume that
I`app P Lpp0, T ;L2p⌦qq X H1p0, T ;L2p⌦qq, p ° 4, 1 § ` § N , satisfy

(3.57) detp⇤pvp2q
` px, t

0

q,wp2q
` px, t

0

q, zp2q
` qpx, t

0

qq ‰ 0, @x P ⌦.

Here pvp2q
` ,w

p2q
` , z

p2q
` qq is the solution of (2.8) with %̄ “ %̄p2q and Iapp “ I`app. Furthermore, we assume that

(3.58) }v2` }W 1,8pQq ` }w2

` }C1pQq ` }z2`}C1pQq § M,

for some positive M . Then there exists a constant C ° 0, depending only on T,⌦,!,M
0

such that we have:

(3.59) }%̄p1q ´ %̄p2q}pL2p⌦qqN § C
´ Nÿ

`“1

}pvp1q
` ´ v

p2q
` q}H1p0,T ;H1p!0qq

` }pvp1q
` ´ v

p2q
` qp¨, t

0

q}L2p⌦q ` }pwp1q
` ´ w

p2q
` qp¨, t

0

q}L2p⌦q ` }pzp1q
` ´ z

2

`qp¨, t
0

q}L2p⌦q
¯
,

for all %̄p1q P A.

By Theorem 3.1, we can readily derive the uniqueness in the inverse problem.

Corollary 3.1. Under the same assumptions as in Theorem 3.1 and if

(3.60) pvp1q
` px, t

0

q,wp1q
` px, t

0

q, zp1q
` px, t

0

qq “ pvp2q
` px, t

0

q,wp2q
` px, t

0

q, zp2q
` px, t

0

qq, x P ⌦,

(3.61) v
p1q
` px, tq “ v

p2q
` px, tq in ! ˆ p0, T q,

for ` “ 1, . . . , N , then %̄p1q “ %̄p2q in ⌦.

Since the number of the unknown coefficients is N , it is natural to expect that N -times observations
can yield the Lipschitz stability. As is stated in Theorem 3.1, our tool is an L2-weighted estimate called
Carleman estimate.

As for inverse problems of determining coefficients in parabolic equations, we refer to Elayyan and Isakov
[?], Imanuvilov and Yamamoto [?]-[?], Isakov [?], Isakov and Kindermann [?], Ivanchov [?], Klibanov [?],
Klibanov and Timonov [?], Yamamoto and Zou [?]. In particular, in [?, ?], determination problems for
principal parts are discussed. In those existing papers, the determination of a single coefficient is discussed,
while here we consider an inverse problem for the identification of multiple coefficients based on a finite set
of observations. Our formulation is with a finite number of observations and this kind of inverse problems
was firstly solved by Bukhgeim and Klibanov [?] whose methodology is based on Carleman estimates. For
similar inverse problems for other equations, we refer to Bellassoued [?], Bellassoued and Yamamoto [?],
Imanuvilov and Yamamoto [?], [?], Isakov [?], Khaidarov [?] , Klibanov [?]-[?], Klibanov and Timonov
[?], Klibanov and Yamamoto [?], Yamamoto [?].

4. GLOBAL CARLEMAN INEQUALITY FOR REACTION-DIFFUSION SYSTEM

In this section we give Carleman estimate for the raection-diffusion model. This Carleman estimate would
be used later for the stability and uniqueness of the solution of the parameter identification problem. We are
interested in identifying the parameters %̄i, i “ 1, . . . , N , where %̄i is the maximal conductance associated
with the ith current.

We first have to define the weight function that we will use. This weight is fundamental in the sense that,
roughly speaking, information will propagate in space along the gradient lines of this function.

• Uniqueness is a consequence of the stability theorem

• Proof based on Carleman Estimates 

• On going work: Numerical estimation of conductance parameters
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Fig. 8 Représentation schématique de la membrane cellulaire. Source: www.bio-energetik.
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où sa conductivité est variable selon les conditions extérieures: en particulier il peut
être fermé.

La dépolarisation de la cellule est généralement causée par l’ouverture d’un canal
ionique. Ce canal est celui du sodium Na+. Son ouverture se fait dans le sens de son
gradient électrochimique, par conséquent, il ne nécessite aucun apport d’énergie de
la cellule. Ce genre de transport ionique est appelé transport passif. L’ouverture d’un
canal de sodium provoque la création d’un courant ionique iNa de l’ordre du pico-
ampère (pA). Ce courant est proportionnel au gradient électrochimique du sodium
(Vm � ENa) et à une variable qui représente l’ouverture et la fermeture de ce canal
GNa. Le potentiel transmembranaire Vm est la différence entre le potentiel intra et
extra-cellulaire. Le potentiel électrochimique ENa est donné par la loi de Nernst

ENa =
RT
F

ln
[Na]e
[Na]i

, (1)

où [Na]e (respectivement [Na]i) est la concentration extra-cellulaire (respectivement
intra-cellulaire) de l’ion sodium Na+. Les constantes R, T et F indiquent respective-
ment, la constante de gaz parfait, la temperature et la constante de Faraday.

Le courant iNa d’ions Na+ à travers ce canal, décrit par Hodgkin et Huxley (voir
[HH52]) est donné par

iNa = GNa(Vm �ENa). (2)

Ce canal ionique n’est pas toujours ouvert. Sa fermeture et son ouverture suivent la
loi de conductivité des portes des canaux ioniques GNa qui peut être réprésentée de

Multiple space dependent parameter Identification 
inverse problem

• Challenge for the next two years 

�T

�H

�

�ext

bonelungs

�
uT = ue, on �

�i�(Vm + ue) · n + �e�ue · n = ��T�uT · nT on �

⇤
⌃⌃⌃⌃⌃⌃⌃⇧

⌃⌃⌃⌃⌃⌃⌃⌅

⇤w

⇤t
+ G(Vm, w) = 0, in ⇥H

�m
⇤Vm

⇤t
+ Iion(Vm, w)� div

�
�i�(Vm + ue)

⇥
= Iapp, in ⇥H

�i�(Vm + ue) · n = 0, on �

�div
�
�i�(Vm + ue)

⇥
� div(�e�ue) = 0, in ⇥H

Heart model (bidomain):

Torso model:

Heart-torso interface conditions:

�
�div(�T�uT) = 0, in ⇥T

�T�uT · nT = 0, on �ext

• Estimate ionic parameter using accessible electrical 
measurements on a patient torso.

• Analysis of the parameter identification problem on the heart is in ongoing  study
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où sa conductivité est variable selon les conditions extérieures: en particulier il peut
être fermé.

La dépolarisation de la cellule est généralement causée par l’ouverture d’un canal
ionique. Ce canal est celui du sodium Na+. Son ouverture se fait dans le sens de son
gradient électrochimique, par conséquent, il ne nécessite aucun apport d’énergie de
la cellule. Ce genre de transport ionique est appelé transport passif. L’ouverture d’un
canal de sodium provoque la création d’un courant ionique iNa de l’ordre du pico-
ampère (pA). Ce courant est proportionnel au gradient électrochimique du sodium
(Vm � ENa) et à une variable qui représente l’ouverture et la fermeture de ce canal
GNa. Le potentiel transmembranaire Vm est la différence entre le potentiel intra et
extra-cellulaire. Le potentiel électrochimique ENa est donné par la loi de Nernst

ENa =
RT
F

ln
[Na]e
[Na]i

, (1)

où [Na]e (respectivement [Na]i) est la concentration extra-cellulaire (respectivement
intra-cellulaire) de l’ion sodium Na+. Les constantes R, T et F indiquent respective-
ment, la constante de gaz parfait, la temperature et la constante de Faraday.

Le courant iNa d’ions Na+ à travers ce canal, décrit par Hodgkin et Huxley (voir
[HH52]) est donné par

iNa = GNa(Vm �ENa). (2)

Ce canal ionique n’est pas toujours ouvert. Sa fermeture et son ouverture suivent la
loi de conductivité des portes des canaux ioniques GNa qui peut être réprésentée de

Multiple space dependent parameter Identification 
inverse problem

• Challenge for the next two years 
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Heart model (bidomain):

Torso model:

Heart-torso interface conditions:
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�div(�T�uT) = 0, in ⇥T

�T�uT · nT = 0, on �ext
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ECGI inverse problem

CT-scan (X-ray)

BSP measurements Estimation of the cardiac potential 



Motivation and Goals

Goals

Reconstruct the electrical potential on the heart surface from 
measurements on the body surface ECGs

• Detect and localize some complex electrical pathway in the heart

• Assess the effect of torso heterogeneity on the inverse solution

• Analyze the errors of the inverse solution based on synthetical 
data 

Challenging questions:

EPICARD Paris, September 18th 2018
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human studies,49,67 and compare its performance to the
BEM-based approach that requires meshing. Human data
were processed using the potential-based method with geo-
metrical information (heart-torso geometry) obtained non-
invasively using CT imaging. All approaches to the non-
invasive reconstruction of cardiac electrical activity can be
referred to as cardiac electrophysiological imaging modal-
ities. The potential-based inverse electrocardiography is a
method for the noninvasive computation of epicardial po-
tentials from measured body surface electrocardiographic
data. From the computed epicardial potentials, epicardial
electrograms and isochrones (activation sequences), as well
as repolarization patterns can be constructed. We term
this noninvasive procedure Electrocardiographic Imaging
(ECGI). For clarity, we refer in the paper to MFS applica-
tion in ECGI as MFS ECGI, and its BEM version as BEM
ECGI.

METHODS

Formulating the Method of Fundamental Solutions
for ECGI

The method of fundamental solutions (MFS) has been
used in various mathematical and engineering applica-
tions to compute solutions of partial differential equations
(PDE).26,41 MFS approximates the solution of a PDE by
a linear combination of fundamental solutions of the gov-
erning partial differential operator,27 which for ECGI is the

Laplacian operator ∇2. The formulation of MFS for a∇2

boundary value problem and Cauchy problem is described
in the Appendix; its implementation in ECGI is described
below.

The objective of ECGI is to determine the electric po-
tential on the epicardial surface of the heart noninvasively,
from measurements of the electric potential on the torso
surface. This constitutes a Cauchy problem for Laplace’s
equation:42

∇2u(x) = 0, x ∈ ! (1)

with the following boundary conditions:

(i) Dirichlet condition: u(x) = uT (x), x ∈ "T on
the torso surface

(ii) Neumann condition:
∂u(x)
∂n

= cT (x), x ∈ "T on

the torso surface

where ! is the 3D volume domain between the heart’s
epicardial surface "E and the torso surface "T as shown
in Fig. 1. u(x) is the potential at location x; uT (x) and
cT (x) are the potential and its normal derivative on the
torso surface, respectively. The goal of ECGI is to obtain
the electric potential on the heart surface uE (x), x ∈ "E

MFS is an approach for solving numerically Laplace’s
equation. In MFS, an approximate solution is represented
in the form of a linear superposition of source functions
(fundamental solutions) located on a set of points (ficti-
tious points, virtual sources) over an auxiliary surface "̂

FIGURE 1. A schematic showing the configuration of fictitious points for a multi-connected domain. The dashed lines are the
auxiliary surfaces that contain the fictitious points (virtual sources) marked by black circles. The filled square is the geometrical
center of the “heart”, the empty triangle is located on the “heart surface” and the empty square on the “torso surface,” the two
black circles on their connecting line at the auxiliary surfaces are the corresponding virtual source points.

ECGI inverse problem

• Solve in terms of Least square 

where

• Meshless method. Fast construction

Wang and Rudy Description de la méthode

Description de la méthode des solutions fondamentales

Résoudre EDP sans maillage via un ensemble de points ”sources”

Solution : combinaison de solutions fondamentales de l’opérateur du
problème aux points sources, ici Laplacien ∇2

Exemple : ∇2u(x) = 0, x ∈ Ω avec u(x) = b(x), x ∈ Γ, Γ = ∂Ω

Solution fondamentale du Laplacien f (r) : ∇2f (r) = δ(r) avec :
δ(r) : fonction Dirac, r = ||x − y ||
x ∈ Ω : point ou l’on cherche la solution
y ∈ Ω : point source utilisé pour calculer la solution

En 3D : f (r) = 1
4πr

Le potentiel peut s’écrire : u(x) =
∫

Γ f (||x − y ||)e(y)dy , x ∈ Ω, y ∈ Γ

avec e(y) : fonction densité inconnue

Julien Bouyssier (LIRYC) Résumé bibliographique 30/09/2013 5 / 50

and

Wang and Rudy Motivations

Wang and Rudy, Annals of Biomedical Enginnering, 2006

Application of the Method of Fundamental Solutions to

Potential-based Inverse Electrocardiography

Nécessité de discrétiser le coeur et le torse en éléments : maillage

Continuité du maillage (pas de chevauchement des éléments)

Mailler des surfaces irrégulières : erreurs possibles sur solution

Etapes d’optimisation du maillage : prend du temps et manuelle

Julien Bouyssier (LIRYC) Résumé bibliographique 30/09/2013 4 / 50

• But neglects heterogeneities and anisotropy in the torso 
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (∥xk − y j∥) = uT (xk),

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(2)

Neumann condition :
M∑

j=1

a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
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... · · ·
...
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... f (∥xN − yM∥)
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∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)
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... · · ·
...
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⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:
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(2)
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M∑

j=1

a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.
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Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (∥xk − y j∥) = uT (xk),

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(2)

Neumann condition :
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a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛
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∂ f (∥x1 − y1∥)
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a⃗ =

⎛
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...
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Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (∥xk − y j∥) = uT (xk),

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(2)

Neumann condition :
M∑

j=1

a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
...

... · · ·
...

1 f (∥xN − y1∥)
... f (∥xN − yM∥)

0
∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)

∂n
...

... · · ·
...

0
∂ f (∥xN − y1∥)

∂n
· · · ∂ f (∥xN − yM∥)

∂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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a⃗ =

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠
, b⃗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT (x1)
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uT (xN )
0
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⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
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a j f (∥xk − y j∥) = uT (xk),
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∂ f (∥xk−y j∥)

∂n
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where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
...

... · · ·
...

1 f (∥xN − y1∥)
... f (∥xN − yM∥)

0
∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)

∂n
...

... · · ·
...

0
∂ f (∥xN − y1∥)

∂n
· · · ∂ f (∥xN − yM∥)

∂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a⃗ =

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠
, b⃗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT (x1)
...

uT (xN )
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This matrix equation can not be solved for a⃗ without
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(!̂ encloses the auxiliary domain "̂, which contains the
actual domain " as shown in Fig. 1). As the fundamental
solutions satisfy Laplace’s equation everywhere except at
source points, this representation satisfies Laplace’s equa-
tion in the domain ". In addition, the specified boundary
conditions are imposed at a set of boundary points (collo-
cation points) on the domain boundary !. Since the fun-
damental solutions do not have singularities at points on
the boundary !, standard quadrature rules can be used to
approximate the surface potential and its normal gradient
when computed on the boundary.37

As shown in the Appendix (Eqs. (a21) and (a22)), MFS
can be applied to discretize the Dirichlet and Neumann
boundary conditions in Eq. (1) as:

Dirichlet condition : a0 +
M∑

j=1

a j f (∥xk − y j∥) = uT (xk),

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(2)

Neumann condition :
M∑

j=1

a j
∂ f (∥xk−y j∥)

∂n
= cT (xk) = 0,

1 ≤ k ≤ N , xk ∈ !T , y j ∈ !̂

(3)

where f (r ) = 1
4πr is the fundamental solution of Laplace’s

equation in 3D, r = ∥x − y∥ is the 3D Euclidean distance
between point x and point y, n̂ is normal to the torso sur-
face, a0 is the constant component of uT (x) and a j is the
coefficient of a virtual source at location y j . Note that a0

and a j have different units in this formulation. The con-
ductivity of the volume is reflected in the coefficient a j ; it
does not appear explicitly in the ECGI formulation when
the volume of interest is homogenous. M is the number of
fictitious points. N is the number of torso surface points. ! is
the boundary of domain ", and !̂ is the auxiliary boundary
of the auxiliary domain "̂, which contains the domain " as
shown in Fig. 1.

Boundary conditions are satisfied on N torso surface
points xk . In Eq. (2) uT (xk) is the measured body surface
potential at electrode position xk . In Eq. (3), cT (xk) = 0 be-
cause the torso is in air, an insulating medium that does
not support current flow. The locations of the fictitious
points y j are configured based on the particular domain
geometry, which in ECGI is a multi-connected surface
in 3D, composed of the body surface and heart surface
(! = !T ∪ !E ). Using a static configuration scheme (see
Appendix), the fictitious sources are placed on two aux-
iliary surfaces (!̂ = !̂T ∪ !̂E ) which are determined by
inflation/deflation of the true surfaces (torso surface and
heart surface). Figure 1 shows the configuration of the ficti-
tious points in a 2D representation. The fictitious boundary
corresponding to the heart surface !̂E is obtained by de-

flating the heart surface by a factor of 0.8 relative to the
geometrical center of the heart. The geometrical center of
the heart can be found by computing the average coordinate
value of all the heart surface nodes. For the torso surface,
the fictitious boundary !̂T is obtained by inflating the torso
surface by a factor of 1.2 relative to the geometrical center
of the heart.

Expressing Eqs. (2) and (3) in matrix form gives:

Âa⃗ = b⃗ (4)

where, Â =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (∥x1 − y1∥) · · · f (∥x1 − yM∥)
...

... · · ·
...

1 f (∥xN − y1∥)
... f (∥xN − yM∥)

0
∂ f (∥x1 − y1∥)

∂n
· · · ∂ f (∥x1 − yM∥)

∂n
...

... · · ·
...

0
∂ f (∥xN − y1∥)

∂n
· · · ∂ f (∥xN − yM∥)

∂n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a⃗ =

⎛

⎜⎜⎜⎝

a0

a1
...

aM

⎞

⎟⎟⎟⎠
, b⃗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT (x1)
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uT (xN )
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Matrix Â is of dimension 2N × (M + 1); a⃗ and b⃗ are vec-
tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
BEM.15,16,32,33,47,56,61,62,65–71

Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:

uE (x) = a0 +
M∑

j=1

a j f (∥x − y j∥), x ∈ !E , y j ∈ !̂

(6)
Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
ing the spatial distribution of potentials on the epicardial
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Âa⃗ = b⃗ (4)

where, Â =
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tors of dimensions M + 1 and 2N respectively.

This matrix equation can not be solved for a⃗ without
regularizaiton,76 because the matrix Â is ill-conditioned
and the measured body surface potential contains measure-
ment error. The Tikhonov regularization method76 with
CRESO-determined regularization parameter24 is used to
stabilize the inverse procedure and obtain a⃗, similar to
our previous ECGI inverse computations using mesh-based
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Once the coefficient vector a⃗ is obtained, u(x) can be
computed at any location in the domain using:

u(x) = a0 +
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a j f (∥x − y j∥), x ∈ ", y j ∈ !̂ (5)

The epicardial potential can then be calculated using:
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Epicardial potentials are calculated using (6) on many

epicardial nodes; numbers are provided for each dataset in
the Results section. An epicardial potential map, reflect-
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• Once weighs are computed, potential at any point in space is obtained
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For a given ECG data measured by the of vest electrodes

�e(ti) = min
v�Rn

J(v, ti), where

 M is the transfer matrix and L is a penalization operator (Id, Grad,..., )

L-curve analysis

ECGI inverse problem

• Trancated SVD (Cheng et al 2001)

• CRESO (Colli-Franzone et al 85) 

• Zero-Crossing  (Lian et al 98)

• GMRes:  Brooks et al 94

• Conjugate Gradient: Carulatha 2004

Iterative Methods 

Choice of regularization parameter 

J(v, ti) =k Mv � ECG(ti) kplp +� k L(v) kqlq
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Fig. 1. Anatomical model and boundary conditions

2 Modelling

2.1 Mechanical model

The mechanical heart model that we consider was described in details in [31].
For completeness we now summarize the key ingredients of this model.

2.1.1 Active constitutive law

Our mechanical model relies on a chemically-controlled constitutive law of car-
diac myofibre mechanics introduced in [4] and consistent with the behavior of
myosin molecular motors [16]. The resulting sarcomere dynamics – derived by
applying the moment-scaling method with the first two moments correspond-
ing to active sti�ness and stress, see [4] – is in agreement with the “sliding
filament hypothesis” introduced in [15].

Denoting by ‡c the active stress and by ec the strain along the sarcomere, the
relation between ‡c and ec is given by the following set of ordinary di�erential

4
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For a given ECG data measured by the of vest electrodes

�e(ti) = min
v�Rn

J(v, ti), where

 M is the transfer matrix and L is a penalization operator (Id, Grad,..., )

ECGI inverse problem

J(v, ti) =k Mv � ECG(ti) kplp +� k L(v) kqlq

On going work

• We compare 15 different algorithm by varying:

• The method used to compute M: MFS, FEM methods

• The operator L: Identity for zero order, gradient for first order

• The algorithm used for the choice of the regularization parameter: 
CRESO, ZERO crossing, GCV, R-GCV, U-curve. All are based on the 
SVD of the matrices M and L 
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ECGI inverse problem: Evaluation
Evaluation data 

• Explanted heart experiment at the LIRYC institute

Frank the tank

10/11/17Carmen - 13

Unique experimental setup
Funding from Région Aquitaine + “Fondation Coeur et artères”

Controlled environement

Simultaneous recordings of BSPM and epicardial maps

Provided inputs for J. Chamorro’s postdoc
Improvments of the MFS method

New regularization technique → patent submitted in June

J. Chamorro

• Ex-vivo pig hearts are introduced in the torso tank
• Different stimulation protocols 
• Introducing different types of arrhythmia: VF, AF,…
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ECGI inverse problem: Evaluation

Evaluation results 

A.Karoui et al. Inverse Problem in electrocardiography

Figure 2. A : The heart-human-shaped torso tank model used for the experimental data simulations. The
heart consists of 761 nodes and 1518 elements and the tank contains 1177 nodes and 2350 elements. B :
the heart geometry covered by the sock consisting of 108 electrodes (blue points).

Figure 3. The RGCV criterion plotted in terms of � and �. The red markers are the grid points where
RGCV(�,�) is minimum when � is fixed

CRESO GCV RGCV UCurve ADPC

RV
MFS-ZOT 2.8 ± 1.2 2.4 ± 1.1 1.9 ± 0.9 2.4 ± 0.8 2.5 ± 0.8

FEM-ZOT 2.7 ± 0.8 N.A 2.7 ± 0.9 2.0 ± 0.1 N.A

FEM-L1 1.9 ± 0.5 N.A 1.8 ± 0.3 1.8 ± 0.4 N. A

LV
MFS-ZOT 1.7 ± 0.7 2.1 ± 0.3 2.0 ± 1.1 1.3 ± 0.6 2.1 ± 0.2

FEM-ZOT 2.1 ± 0.4 N.A 2.8 ± 1.0 3.0 ± 0.2 N.A

FEM-L1 1.3 ± 0.5 N.A 1.2 ± 0.6 1.3 ± 0.6 N.A

BiV
MFS-ZOT 2.5/N.A 2.3/1.5 0/N.A 2.3/N.A 2.7/2.0

FEM-ZOT 1.8/N.A N.A 1.8/2.1 2.5/N.A N.A

FEM-L1 2.5/N.A N.A 1.3/1.4 1.4/N.A N.A

Table 1. mean errors and standard deviations of localization of pacing sites for the 2 paced rhythms RV,LV
using the 3 numerical methods MFS-ZOT, FEM-ZOT and FEM-L1 combined with the regularization
parameter choice methods. For BiV, values are the geodesic distances (LV/RV). N.A means that one could
not extract the pacing site from the reconstructed signals.

Frontiers 17

• stimulation site localizations 
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ECGI inverse problem: Evaluation

Evaluation results 

• Relative Errors and Correlation coefficients
A.Karoui et al. Inverse Problem in electrocardiography

Figure 7. Spatial mean relative errors and correlation coefficients and their standard deviations for
reconstructed epicardial potentials with all the algorithms for three paced rhythms: A : Biv, B : RV and C :
LV

This is a provisional file, not the final typeset article 20

A.Karoui et al. Inverse Problem in electrocardiography

Figure 7. Spatial mean relative errors and correlation coefficients and their standard deviations for
reconstructed epicardial potentials with all the algorithms for three paced rhythms: A : Biv, B : RV and C :
LV

This is a provisional file, not the final typeset article 20

A.Karoui et al. Inverse Problem in electrocardiography

Figure 7. Spatial mean relative errors and correlation coefficients and their standard deviations for
reconstructed epicardial potentials with all the algorithms for three paced rhythms: A : Biv, B : RV and C :
LV

This is a provisional file, not the final typeset article 20

• Relative Errors are too high
• It is not the case with simulated data

• Two possible causes:

★ Too much noisy data

★ Limitation of the transfer function
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ECGI inverse problem: Evaluation

• Understand the origin of the high error in the reconstructed signals

• Challenge for the next two years 

• Use a personalized heterogeneous torso

• Laplace equation model in the torso domain may be revised 

• Test more other methods once the forward problem of the ECGI is validated 

• Design with the experimentalists different protocols to evaluate the forward problem 

• Use the dynamic model to construct a time coherent electrical map

• Volume sources would be considered 

• Many macroscopic and microscopic parameters have to be estimated 

• Link with the parameter identification problem: analysis and numerics.

• Once validated: test methods on clinical data 


