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Traditional grid

Designed 130 years ago
=  First coal plant: Thomas Edison,1882
Generation

= Electrical power is centrally generated
at large power plants

Transmission
=  Grid: transmission network ;r:m )
Distribution o || Disrbution
=  Consumption is distributed over a large
geographical area @ COMMERCIAL & INDUSTRIAL DISTRIBUTION

BUSINESS COMSUMERS

Energy demand will triple by 2050
Deregulation/liberalization market

Power loss : 6% in US, worse for
other countries

= USA: estimated $25 billion per year
Environment impact

= Greenhouse Gas (GHG) emissions:
contribution of 34%

G DISTRIBUTION
AUTOMATION
DEVICES

o RESIDENTIAL CONSUMERS
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Challenges and constraints

Electricity difficult to store
= Advances in battery design
= Electrical vehicles (EVSs)

= Flexibility: Energy production is
very hard to change quickly

=  Most of the flexibility is provided by
fossil fuel power stations

= Energy demand fluctuates widely
during the day/seasons/weather

= Electricity generation must match :
Less More

consumer demand every minute Operational Flexibility
(power flow equations)

» Peak load versus off-peak load

TESLF

Simple-Cycle
Turbines (Gas, Oil)

Higher

* Combined-Cycle
Gas Turbines
* Coal
* Nuclear
* Coal

Operating Costs

Lower

Hydroelectric

Average

Load factor = fiemate]

E Peak
3 __Pea_kd_erfrﬂ ____________________ demand
= Low utilization of the grid during = y \Highmemand
. E " ' of the day
Off'peak tlmeS E Average demand
O LG SR —
= Volatility in prices =
g
Midnight 6am Noon 6 pm ]
Time e
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From Traditional Grid to Smart grids

= Distributed heterogenous

From grid to smart grid: Optimize power generation and consumption

efficient reliable generation With IT-based efficient control
= Plants are distributed almost the S '
=5 Y
same way the consumers are jmﬁ PP W P, S N
L. . ; Power Power Transformation  Distribution Consumption

=  Minimal transmission of power to generation  transmission

distant consumers

. .
u TWO'Way InfOrmatlon ﬂOW Control  Mega solar system Small/ I(-:irrggot'log%oners.

center Wind farm mid-size PV refrigerators, etc.)

= Real-time demand, ... ’ ?Fﬁ .. Wind power —
= Two-way power flow r % Heat purnp

Water heater
= Smart meters: usage data \ Moritor s%age .'
ery ‘s

= Flexible controllable load & mﬁ s T
generathn gell::lz‘;:iiron ha:s?n\'::;ion Transformation Distribution Cg:;stﬁrggéc&n

power sources

| |
Renewable energy “A Smart Grid is an electricity network that can intelligently integrate
u Energy Storage the actions of all users connected to it — generators, consumers and

. P| : lectri hicl those that do both — in order to efficiently deliver sustainable,
ug In eleciric vehicles economic and secure electricity supplies.”

= Smart appliances — Schneider Electric (2010)

=  Customers can respond to price
signals sent from the utility

© El-Ghazali TALBI, INRIA Lille — Nord Europe



Optimization challenges in Smart Grids

= (Generation optimization
=  Unit commitment

= Economic dispatch NIST Model

—  Secure Communication Flows

s se Electrical Flows

* Transmission optimization

i Jl
Service
.. Provider
N

= Distribution optimization

= Pricing and markets ﬁ
= Dynamic pricing e

- . —

: -
Transmission ===« pistribution *~ " .\w_r/
\“‘ " 4

dr”
= Customer management

= Demand response
management
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House energy demand response

. Photavaltsie Panel | Home Deviees to bewsed Energy Tarklf
=  Local production (wind, solar, ...) - & e ||| H
i ET: 11 pm =

= Local load

=  Energy tariff W

=  Find

Demand
= Home devices scheduling Ma;;g}:;lleut

=  Energy plan

. Buy/sold/store _.‘c’// \

Energy Plan (ScldTought /" Hiome Deviees Schoduling
. ObjeCtlveS - ::.:_.Hﬂrn—'m' -H Stans an B30 pm
= Min Bill, Max Profit B & i
J wn\.,..Jl"'-_-‘J L .
= Min Peak demand, Max Confort, ... i T —
= Constraints
'’

= Production
= Batterie constraints

= Home devices scheduling
. Time windows

= Literature solutions ® i . |
=  |LP (Integer Linear Programming) [A. Barbato 2012] /}iﬁﬁiﬁm 1 | power
= Mixed Linear Integer Programming [D. Zhang 2011] —~ »
=  Multi-objective hybrid evolutionary algorithms [Z. heah o Wi Forensivg
Garroussi, E-G. Talbi & R. Ellaia, 2016] ﬁ @
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Optimization issues

Instant:j

b

Optimization

© El-Ghazali TALBI, INRIA Lille — Nord Europe

C " Model = Plan
reate a X oy i__ ohie B == I
model "!}&‘ pro. blem [T T
Time
Decision —» ' B
variables Given t = (x,x,,...,x,
Objective —» minimize f{%)
such that
Bounds = Ib, < x,< ub,, i=1.n
and
g,(2) b, _
g,(?)<bh, »
Constraints <:
g, (*)<bh,




Optimization Challenges

= Large scale problems

= Huge number of generators, clients, big data
= USA: 12M distributed generators, 3M miles lines, ...

= Multi-objective problems
= reliability, availability, efficiency, sustainability, cost.

* Mixed optimization
=  Continuous and discrete variables

= Multi-periodic planning and optimization
= Distribution networks evolution (different scenarios)

= Optimization under uncertainty

=  Stochastic data

= Ex:wind and solar production (weather), demand,
prices, ...

e.g: stochastic program

k¥ N " c
mia 9o(x. <)
t.g. gi(x,&) <0, 71 =1
¢ :random variable
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Multi-Objective optimization

Economics

=  Keeping downward prices on electricity prices,
reducing the amount paid by consumers

Efficiency

» Reducing the cost to produce, deliver, and
consume electricity

Reliability
» Reducing the cost of interruptions and power
quality disturbances

» Reducing the probability and consequences of
widespread blackouts

Security

» Reducing dependence on imported energy as
well as the probability and consequences of
manmade attacks and natural disasters.

Environmental friendliness

» Reducing emissions by enabling a larger
penetration of renewables and improving
efficiency of generation, delivery,
consumption.

(eziwiuiw) sjoedwi [ejusLILOIIAUT

Least costs solution

o
o

Unattainable solution
corresponding to the
optimal of both

O Non-dominated solution

() Dominated solution

objectives O

o
o

Least environmental
impacts solution

_O ______________________

Costs (minimize)
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ptimization methods

Hybrid (Exact and Approximation
Algorithms)

= Mathematical programming
= Linear programming,
= Mixed integer programming
» Relaxation (Lagrangian, SDP,...)

= Atrtificial intelligence - Metaheuristics

= Single-solution based algorithms:

local search, tabu search, ...

= Population based algorithms:
evolutionary algorithms, particle
swarm, ...

© El-Ghazali TALBI, INRIA Lille — Nord Europe
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Optimization Perspectives

= Bi-level optimization & Game Upper-level / Leader

theory l Lower-level / Follower

= Dynamic pricing /

minF(x, y)
X
= Optimization & Simulation subjectto  Gx.y) =0
_ minf (x.y)
= Meta-modeling, Surrogates subject t0 g(x, y) < 0

= High performance computing,

Parallel algorithms .. .. |
=  GPU, Multi-cores, Cluster, . R
Heterogeneous computing | e

» Optimization & Machine learning
= Forecasting (demand, renewable

generation)
»  Short-term, medium-term, long-
term

= Neural networks, deep learning,
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Smart Grid Application perspectives

= Smart grids and Logistic/Transportation systems

= Electrical vehicles (charging systems)

= Electric vehicle routing problem
[J. Serrar, E-G. Talbi, R. Ellaia, 2017]

= Electrial buses

= Smart grids and Cloud computing systems

= (Green data centers
= Energy-aware Job Scheduling
= Cooling

THE COMMONALITY OF SMART AND GREEN
BUILDINGS

» Smart grids and Smart city

= Urban configuration
= Smart green building

= Electrical vehicles as storing devices
= More flexibility

GREEN BUILDINGS
SONIATING LHYINS
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Publications — Smart grids (modeling anc

» Garroussi, Z., & Ellaia, R., and Talbi, E.G., A Multiobjective approach for
demand side management in Smart Grids. In 2016 The 6th Int. Conf. on
Metaheuristics and Nature Inspired Computing ( META’16), Oct 2016

= Garroussi, Z., & Ellaia, R., and Talbi, E.G., Appliance Scheduling in a Smart
Home Using a Multiobjective Evolutionary Algorithm. 4rd International
Renewable and Sustainable Energy Conference (IRSEC) IEEE, Nov 2016.

» E-G. Talbi, Z. Garroussi, R. Ellaia, “Multi-home demand side management
in smart grids”, PGMO Days Optimization and Operations Research, EDF
R&D Saclay, France, Nov 2016.

» |nvited Keynote speaker of E-G. Talbi, “Optimization of smart grids:
opportunities and directions”, |ICOA’2017, International Workshop on
Optimization and Applications, Meknes, Morocco, March 2017.

» Z. Garroussi, R. Ellaia, E-G. Talbi, J-Y. Lucas, «». ICCAIRO’2017 IHybrid
Evolutionary Algorithm for Residential Demand Side Management with a
Photovoltaic Panel and a Batterynt. Conf. on Control, Artificial Intelligence,
Robotics & Optimization, Praga, Czech Republic, May 2017.

= Z. Garroussi, R. Ellaia, E-G. Talbi, J-Y. Lucas, «Hybrid multi-objective
evolutionary algorithms for the residential demand side management with
thermal and electrical loads». MIC’2017 Metaheuristics International
Conference, Barcelona, Spain, July 2017.

© El-Ghazali TALBI, INRIA Lille — Nord Europe



Publications - Multi-objective opt. uncert:

= A. Gannouni, R. Ellaia and E-G. Talbi, «Solving Stochastic Multi-
objective Vehicle Routing Problem using Probabilistic
Metaheuristic”, International Workshop on Transportation and Supply
Chain Engineering IWTSCE16. Nov 2016, Rabat, Morocco.

= A. Gannouni, R. Ellaia and E-G.Talbi. "A stochastic version of
dominance-based multi-objective local search" . 5t International
congress of the SM2A, March 2017, Meknes, Morocco.

= A. Gannouni , R. Ellaia and E-G. Talbi, "Solving stochastic green
transportation problem using metaheuristic: Modeling and
simulation» , 7th International Conference on Approximation Methods
and Numerical Modelling in Environment and Natural Resources:
Mamern'17, May 2017, Oujda, Morocco.

= J. Serrar, E-G. Talbi, R. Ellaia, Electrical multi-objective vehicle
routing problem, Project Report, July 2017
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Industrial impact and projects

= EDF contract (2015-2016)
= Electrical load management in smart homes

= EDF contract (2017-2018)
* From single to multiple domestic consumers in smart
grid management
» |nvestigate the possibility of jointly optimizing many
houses energy smart management systems located in
the same sub network

= Propose to build as a result of the project a database of
householders demand signals, including various types
of flexibility.

© El-Ghazali TALBI, INRIA Lille — Nord Europe



= More than 100 participants. http://meta2016.sciencesconf.org
= 25 countries, 3 tutorials, 85 papers

https://meta2018.sciencesconf.org




Hybrid Multi-objective Evolutionary Algorithms for
the Residential Demand Side Management with
Thermal and Electrical Loads
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Traditional grid VS Smart grid

. @ One-way power flow,

=8
s e T . @ Centralized distribution,
E v & L= a Jagj @ Simple interaction.

f?f%// \%

Source: www.epri.com

@ Distributed heterogeneous ) )
. ® £ _ = @7
generation, @ s, Q7 ®
. . \ gj .// = ‘ J ‘ =z
@ Two-way information flow, w & | S
. K ey 0l a2
@ Two-way power flow, %A N2 Y g b} 1 P
> - 03
® Smart meters, | - A &
. . . Source: www.epri.com
@ Real-time interaction. } .
£y lnzia— T €DF
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Demand Side Management (DSM)

@ Demand side management (DSM) is a key for future energy
management.

@ Demand side management refers to the policies that are intended to
either curtail or shift energy consumption with the aim to achieve
financial, societal and environmental benefits.

@ Benefits of DSM :

o Cost reduction,

Load factor improvement,

Managing energy demand-supply balance with the local energy
generation and storage system,

Carbon emission reduction,

Energy efficiency.

© o

o o

o, [ J
&\ Ceia Jenr
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Home Energy management system

Through an automated home energy management system it will be
effectively to:
@ Automate the consumers’ electricity use in response to the grid,
weather conditions, and the desired comfort level.

@ Schedule the electricity used during on-peak periods through some
demand response techniques, including peak shaving, flexible loads

shifting, and valley filling %@ Lot - ‘;‘QEDF

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 5/38
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Proposed residential DSM

The micro-combined heating, cooling and power system (MCCHP),
The thermal energy storage (TES),

The battery (B),

The photovoltaic panel (PV),

and the different electrical and thermal loads (EL & TL).

Figure: The electrical and thermal power flow between the different components
of our proposed residential DSM framework.

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 10 / 38



The micro-combined heat, cooling, and power model
(MCCHP)

VteT,
MCCHP - Phiccnp : MCCHP electrical power output, - Hisccrp : MCCHP thermal power output,
Decision variables [ - Fi/ccqp @ The natural gas consumption of the MCCHP,

- Sticcrp : MCCHP on/off status.

- Ne and 7y, © electric and thermal efficiencies,
- B is the converting factor of 1 kWh to m® natural gas,
B - rre is the ramp rate of the MCCHP (kW /h),
- PRinup (HRop) and PR, (HT2S,,p) @ The minimum and the maximum electrical
(thermal) output.

MCCHP
Parameters

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas



Battery model

Vte T,

B - Two binary variables are defined: s’ (resp. s'y,) is equal to 1 if the battery is
Datt.e.ry iabl EJ charged (resp. discharged) at time slot ¢ and 0 otherwise.
SCBION VEHERIes - P, and Pt : Charges / discharges rates,

- SOC! : The battery state of charge.

- SOC™" and SOC™3 : maximal and minimal state of charge,

Ez::fnrzrers Bl - P57%, (resp. PJ%¥) is a maximal charging (resp. discharging) rate,

- Tch, Ndch are the charging and the discharging efficiencies, - Epatt is the battery capacity.

E 9aAC
Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 12 / 38




Thermal energy storage model (TES)

"TES" —
Decision variables

- HE The heat power injected from the TES,

- HJ™ The heat power drawn from the TES,
- st and s, : The injecting and drawing status at time slot t.

TES” _
Parameters

- in and 74, are the injecting and drawing heat efficiencies,
— B H;’;a’\'

, Hj® are the maximal heat injected and drawn respectively,
- Qp, and QF2:

TES

are the minimum and the maximum energy content limits of the TES.

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas
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Electrical loads

- x¢' : the working status of an electric load for each e € EL and for each time slot

- EL is the set of electrical loads,

- gt is the required amount of electricity of e at time slot t, De is the processing time of e,

- The load profile ge = {q2, g2, , g2} for each electric load e € EL,

- MST,, ET, are respectively the minimum starting time and a maximum ending time of e.

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 14 / 38



Thermal loads : HVAC ! and WS 2

Hfvac and H{ys are the heat power consumed by the HVAC and the WS,
TE: The indoor temperature of HVAC,
Tiys: The hot water temperature of water storage.

Thermal loads
De: variables

T}, is the outdoor temperature, Cy;, is the specific heat of air,

R is the thermal resistance of the house wall,

Tcold is the cold water temperature
Thermal loads [l cto’d! AN,
Bl - V.4 is the volume of the cold water,
Parameters o : : .
V is the volume of the electric water storage, Cyater is the specific heat of water,
- Tivac: Tws T{VAc and T\ are the minimal and maximal acceptable temperature respectively,
of HVAC and hot water in the WS.

1 Heating, ventilation and air conditioning.
2 Water storage.

o = = E = 9acn

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 15 / 38



Other constraints

Other Decision
variables

- Hjc is the heat power of the absorption chiller

- PEc is the electric power of the electric chiller,

-COPAC s the coefficient of performance of the absorption chiller

-COPEC s the coefficient of performance of the electric chiller,

DA

16 / 38



Objectives |

T T T

b I
Total cost = Z(PE2EL + Péog) - T + Z(F/\t/ICCHP - Mgas)  — Z(Pﬁvzc + Plicchp2c) - Tt
t=1 =il =il

Electricity cost Natural gas consumption cost Revenue
- Trguy : The purchased electricity from the grid at each time slot ¢,
- Tgas: 1 he purchased natural gas price,
- Tsely: The selling electricity from the PV to the grid (constant).

T T

Carbon dioxide emissions = > Fiyccup - g + O _(Péag + Pogr) - it
t=1 t=1

emissions from MCCHP emissions from the Grid

- g is the CO2 emission from the MCCHP (g/m®),
- e is the CO2 time variable signal from the power grid (g/kWh).

L
|EL|

EL
> Ue-100 + WENAE +
e=1

Discomfort objective =

—— ——
—_————— Discomfort caused by HVAC  Discomfort caused by WS
Discomfort caused by electric loads

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas



Objectives I

PST.—ST. ;
Fo5 vy o if MST., < ST. < PST,
Ue =
ST.—PST, ;
EFoDaioFoT if PSTe < STe < ETe—
in des
AT = max(Tos — Tie: Thiae — Thg)
D,
i
MST, PS, ET,
W Unacceptable comfort zone
Tolerable comfort zone
I Preferred comfort zone
Electrical loads comfort level parameters
Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas

HVAC _ 100 \~T _dj,
UTL - T Zt ATnd
De+1
d t de i
Tod = Th i Tiac < Thy < Tig — AT
0 if Tdes — AT < Th, < T+ AT
ind L= lind in
dfy =
d d d t d
Tha = Ti Tog +ATHY < Thy < TS,
d .
AT,’,;’aX otherwise
Tri—ATS T+ ATy
| |
t B t
Tl AT T ATy =

- Unacceptable comfort zone
Tolerable comfort zone

B Preferred comfort zone

HVAC comfort level parameters

18 / 38



Table of Contents

Hybrid Multiobjective Evolutionnary Algorithm (H-MOEA)

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 19 / 38



Hybrid Multiobjective Evolutionnary Algorithm (H-MOEA)

@ A hybrid algorithm based on combining a multiobjective
evolutionary algorithm and an exact solver (CPLEX).

@ Solutions in are incompletely represented, and optimally the exact
solver determines the missing parts of the encoding.

@ Deal with constraints and guarantee the feasibility of solutions for
our multiobjective scheduling problem.

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 20 / 38



Proposed H-MOEA

[ | 1

External data : Home components data : H-MOEA parameters :
o Electricity price signal, e User comfort preferences, o Number of generation N
o Gas Price, © Appliances parameters, « Population size
« CO2 emission signal o Critical load profile, o Crossover probability
 Weather data : outside » Hot water demand, y « Mutation probability
Temperature. « Battery, MCCHP characteristics, « Set generation counter

.  Photovolaic generation iy 9

profile. =

\ \
|

Generate partial chromosomes :
« Starting times of electric loads, Update archive

« Power and ON/OFF status of thermal loads.

T
]

Perform CPLEX decoder and calculate :
o the optimal planning of MCCHP,
o the optimal planning of charging/discharging
of the battery.

Number of
generation
Is reached ?

Yes

I \ Mating selection \
Evaluation of the three objectives : 1
« Total energy cost ‘

o Total discomfort
* Dioxide emissions

Variation operators ‘

1
T ‘ Increment the generation counter ‘
i+l

‘ Fitness assignment ‘
i

‘ Diversity measure ‘

i ‘ Report pareto optimal front "‘
‘ Replacement selection ‘

L
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Data |

@ A time horizon of 24 hours is considered and subdivided in 24 time slots
of one hour each.

@ Natural gas price is 56 cents per m°.

@ The feed-in tariff is 12.6 cents per kWh for photovoltaic [Ministry of
Ecologie et al., ], 6.1 cents per kWh cents for the MCCHP [Ministry of
Ecology and Energy, |.

Table: Electricity prices [Pon, 2016]
Table: Scenarios developed for analysis

Hour Price (Cents/kWh)  Hour Price (Cents/kWh)
1 10 13 13

Scenarios Grid PV panel Battery MCCHP TES

el aL L & = 2 10 14 13
w2 v v x v v 3 10 15 13
Winter ~ SW3 v x v v v 4 10 16 13
Swa v x x v v 5 10 17 32
SW5 v x x v x 6 10 18 32
SS1 v v v v v 7 10 19 13
552 v v x v v 8 13 20 3
Summer  SS3 v x v v v
sS4 v x x v v o 13 2 13
sss Y x X Y ; 10 13 22 13
1 13 23 10
12 13 24 10

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 23 /38



045

Base load (kW)

12 14 16 18 20 22
Time slot (Hour)

Critical loads

PV power (kW)

o2 emissansikgwn)

s 2
4
a5 2
H
Sis
25 3
2 5
T
15 z
g
1 2
5
05
o = o
0 2 4 & 1B 0 2 2 o 8 10 12 14 16 18

12
Time slot (Hour)

PV power output

1B 20 2

14
Time slot (Hour)

Outdoor temperature

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas

T o o)

CO2 emissions

“Time slot (Hour)

Hot water demand
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Data Il

@ Electrical loads settings:

Minimum starting time Maximum ending time _ Rated power (KW) Processing time Preferred starting time

Electric Clothes Washer (ECW) 15 23 0.5 2 17
Electric Dishwasher (EDW) 20 24 0.7 2 17
Electric Clothes Dryer (ECD) 15 24 11 1 20
Electric Iron (EI) 15 24 13 1 17

Table: HVAC, WS, and the battery

parameters @ The parameter settings of the
Paramater Valie  Unit pr.oposed algorithm are Perform/ed
By 1150  kWh with IRACE package [Lépez-Ibanez
SOC™n, 50Cm™ 20,100 % et al., 2011].
prmax pmax 2.2 KWh
Tch Ndch 9090 % @ The parameters fixed by this

WS WS WS o . . .

Tmin T pret Tmax 607080 °C package are: Population size is
14 150 Litter . . .
Toon 10 °C 100, the number of iterations is
Cuvater 0.01164 KkWh/°C 200, the probability of the uniform
Cair 0.525 kWh/°C crossover is 0.5, the probability of
R 18 L mutation is 0.6
THVAC THYAC THVAC 1519,24 °C e

Z. Garroussi, R. Ellaia, EG. Talbi , J. Lucas 25 /38
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Results |

@ Tables show respectively the average values of the hypervolume
difference [Zitzler and Thiele, 1999] and epsilon indicators [Zitzler
et al., 2003] over ten independent runs of the three hybrid algorithms

performed for each scenario.

H-NSGA-II

H-SPEA-II

H-IBEA

H-NSGA-II

H-SPEA-II

H-IBEA

SW1

0.0243403371

0.0584918726

0.0546370992

SW1

0.0695312903

0.1399811712

0.1541256257

SW2

0.0556664411

0.0152721462

0.1527615993

0.085396695

0.0420384684

0.228246983

SW3

0.0776497013

0.2029272092

0.1282035293

SW3

0.0707580926

0.2540296487

0.2015655703

SW4

0.0339468387

0.1160753488

0.2105974616

SW4

0.0405099156

0.0938708633

0.1354143033

SW5

0.0145269554

0.0568580755

0.0676583474

SW5

0.0876181793

0.1389579404

0.1777620414

SS1

0.0076601071

0.036452606

0.1061237781

SS1

0.0976087015

0.1697028734

0.2458384418

SS2

0.1494577628

0.137912012

0.2838238053

SS2

0.1996094132

0.2015501406

0.335993147

SS3

0.0107909415

0.1036178348

0.1118950558

SS3

0.0473846154

0.1115716753

0.1549966627

S54

0.1367679942

0.1281304919

0.1473547421

SS4

0.0024881697

0.0902933494

0.1371037166

SS5

0.0034731222

0.1318474842

0.1855408505

SS5

0.0382475399

0.2372136246

0.2120466905

Table: Hypervolume difference I

Table: Epsilon indicator [

@ These two tables clearly confirm the superiority of the hybrid NSGA-II
since it outperforms in seven out of ten cases for /,; and nine out ten

for [ indicator.
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Results I

Total cost (cents/Day) Discomfort (%/Day) _Dioxide emissions (kg/Day)

TSGR (30006 517277 130033) (253051 14,1768 129663 ) (250672 21 1557 L11459)
SW1 H-SPEA-II (236.18 42.0691 1.34333)) (258.929 23.4842 1.22223) (254,031 32,6964 1.11769)
H-IBEA (232:644 30,5736 1.24945) (268483 17.1586 1.21356) (241563 21.1977 1.16289)

(297.892 19.7117 1.38482) (281.3 21.0199 1.29733)

H-IBEA (269.691 19.7542 1.46672) (263.014 21.2906 1.33974)
H-NSGA-II

SW3  H-SPEA-II (281.252 38.7108 1.63555) ~ (311.186 18.7305 1.53399) (301.264 25.9001 1.3697)
H-IBEA (285.501 32.7526 1.61504) | (327.722 16.0817 1.54173) (310.338 24.3653 1.35824)

H-NSGA-II

SW4  H-SPEA-II (310.244 33.4301 1.65964) (335.684 17.5994 1.49026)
H-IBEA (312.225 41.8227 1.7021) (345.517 18.6417 1.53542) (329.611 23.7731 1.51532)
H-NSGA-II

SW5  H-SPEA-II (331.563 36.6768 1.91439)  (357.336 17.5842 1.81745) (362.167 23.2858 1.6931)
H-IBEA (331.664 32.3702 1.78646) (357.11 18.4437 1.8551) (355.224 19.7351 1.71862)

NSOl (729031215603 0564708) (232578 14.6903 0657818) (49 6685 20 1344 0.540056)
SS1 H-SPEA-Il  (-72.4745 28.0934 0.725365) (-48.7607 15.0244 0.612091)  (-52.4888 21.5152 0.550628)
H-IBEA (-69.604 21.5688 0.648811) (-37.3865 16.1172 0.680289)  (-53.3416 20.2897 0.591003)
NSGA-II (-36.4098 15.6568 0.742795)
SS2  H-SPEA-II (-63.5977 18.2424 0.698382) (-49.578 20.626 0.688192)
H-IBEA (-63.9208 20,5616 0.84151)  (-52.863 17.2084 0.865380)  (-55.5362 17.6438 0.758242)
NSGA-II (259.722 34.5909 1.02814)

SS3  H-SPEA-Il  (254.986 33.3543 1.02622)  (278.105 18.2089 1.11047)
H-IBEA (261.508 31.3641 1.06076)  (277.51 19.6841 1.10304)  (261.816 36.2645 1.06004)
H-NSGA-IT

SS4  H-SPEA-Il  (280.717 32.4302 1.15513)  (299.695 17.1355 1.17855) (290.793 22.219 1.1459)
H-IBEA (286.903 33.1476 1.18542)  (314.17 21.0413 1.23777)  (295.504 44.7761 1.17738)

H-NSGA-II
SS5  H-SPEA-II (303.189 35.1191 1.29182) (310.61 22.8598 1.24702)
H-IBEA (298.337 33.2735 1.24769)  (325.665 19.7429 1.35046) (308.069 28.4373 1.23646)

(319.001 18.0125 1.29971)

Table: Extreme solutions obtained with different hybrid algorithms
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Figures of the best F.y solution for case IV for summer
data. Il

@ The battery SOC, the power charged and discharged from the battery are
shown in the following figures.

m/ VAN

o
0 2 4 6 B 0 12 14 16 18 0 2 M 0 2 4 & B 0 12 14 15 8 M 2T M

80C

Figure: Battery SOC in Summer Figure: Charging & discharging
(case IV) battery in summer (case V)

® As we can see, the battery SOC is between the SOC™" and the SOC™a*,



Figures of the best Fy4 solution for case |V for summer
data. |

@ The indoor and the hot water temperatures have been set within the
lower dead band limits (i.e., 17, 65) and the upper dead band limits
(21, 75) for most of the time slots.
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Figure: Indoor temperature in Figure: Water temperature in

summer (case 1V) summer (case V)
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Conclusions and Perspectives

@ Residential DSM model = constrained mixed integer linear problem
Objectives = minimization of the total energy cost, the user discomfort
and the dioxide emissions over a 24-hour horizon.

@ A hybrid approach by combining the multiobjective evolutionary algorithms
(NSGA-II, SPEA-II, and IBEA) and an exact solver (CPLEX).

@ Simulation results showed the effectiveness of our proposed approach to
handle the constraints associated with our optimization problem in order to
ensure the feasibility of the solutions.

°
Take into account the uncertainty related to input data. (PV
production, electricity prices, the outdoor temperature, the hot water
demand ....).

°

Multi-home scenarios, big data.
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