

IoT4D Internet of Things for developping countries

Thomas Djotio Ndié, Emmanuel Nataf, Patrick Olivier Kamgueu

Lirima Scientific Days

12/09/2017

B •

QQ

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

1/23

Objectives Why

Foster Internet of Things technologies

- Developping technologies
 - developping countries
- Useful monitoring
 - environment, agriculture, safety
- Not expansive
 - sensors less 60 K CFA
- Easy to deploy
 - wireless communication

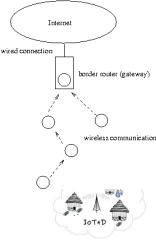
- 04-05/16 : P.O. Kamgueu invited
 - PhD document
- 08/16 : E. Nataf invited
 - Local deployement at Yaoundé university
- 04-07/17 : P.O. Kamgueu invited
 - Publication in journal International journal of Distributed Sensor Network
- PhD defense before end 2017

A (10) < 1 = 1</p>

Context Standardized Wireless Sensors Networks

Sensor : physical device

- sensing capability
 - temperature, humidity, motion...
- CPU
 - Iow power, low memory
 - powerful enough to be computational resource
 - OS : Contiki, TinyOS, Riot
- wireless communication
 - low power (IEEE 802.15.4), low range
 - low throughput (1 Mb)
- battery powered
 - communication is the most energy drain

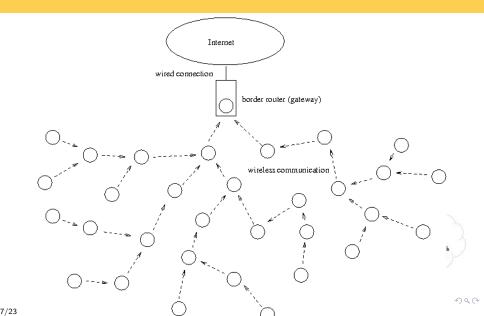


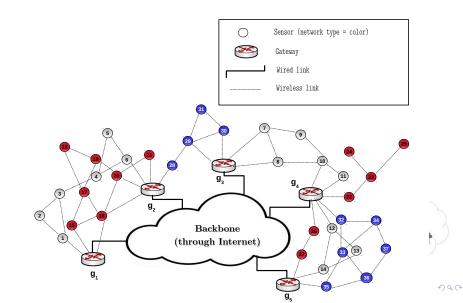
Context Standardized Wireless Sensors Networks

RPL : IPv6 Routing Protocol for Low-Power and Lossy Networks

- Internet standard (RFC 6550 ...)
- Build an optimal communication network
 - between sensors
 - toward Internet acces point
- Contribution [IEEE SensAPP 2015]
 - optimal based on several metrics
 - QoS, battery, shortest path
 - fuzzy logic design

Wide Wireless Sensors Networks


- \blacksquare \approx 100 sensors and more
- Smart city, building, agriculture...
- Several WSN for each
 - smart city
 - temperature, pollution, trafic...
 - agriculture
 - humidity, motion...
- With differents constraints
 - end to end delay
 - lifetime
 - two ways communication


Wide wireless sensors network

Too much for one gateway

Multiple gateways

WSN vs Gateways A Capacitated Facility Location Problem

Each gateway

- provides Internet access point
- to several WSN
- should be available
- is limited
- Each WSN
 - needs gateways
 - avoid bottleneck
 - could be splitted

A ►

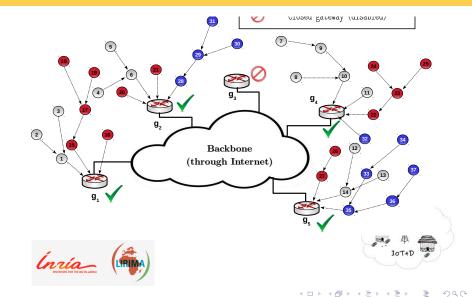
$$\begin{array}{l} V_g: \text{ set of gateways, } V_n: \text{ set of all WSN sensors} \\ c_{ij}: \text{ hops count between gateway } i \text{ and sensor } j \\ X_{ij} = \left\{ \begin{array}{ll} 1 & \text{if gateway } i \text{ is connected to sensor } j \\ 0 & \text{otherwise} \end{array} \right. \\ Y_i = \left\{ \begin{array}{ll} 1 & \text{if gateway } i \text{ is open} \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

$$minimize\left[\sum_{i=1}^{|V_g|}\sum_{j=1}^{|V_n|}c_{ij}X_{ij} + \sum_{i=1}^{|V_g|}Y_i + \sigma_{i\in V_g}(\sum_{j=1}^{|V_n|}X_{ij})\right]$$

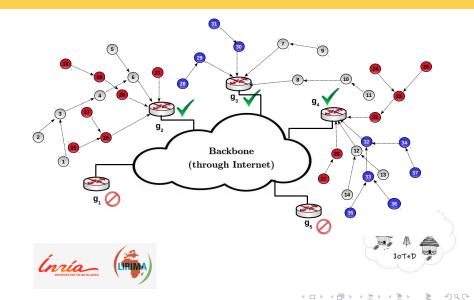
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

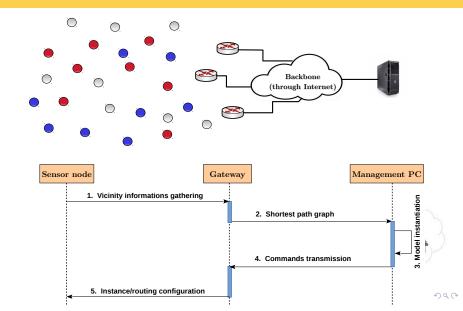
Subject to :

$$\begin{cases} \sum_{i=1}^{|V_g|} X_{ij} = 1, & \forall j \in V_n \\ \sum_{j=1}^{|V_n|} X_{ij} \leq \alpha_i, & \forall i \in V_g \\ X_{ij} \leq Y_i, & \forall i \in V_g, \forall j \in V_n \\ \sum_{i=1}^{|V_g|} c_{ij} X_{ij} \leq MAX_{Deep}, & \forall j \in V_n \\ 0 \leq X_{ij}, Y_i \leq 1, & \forall i \in V_g, \forall j \in V_n \end{cases}$$


IOT4

QQ


 α_i : maximal capacity of a gateway *i* (number of sensors) MAXDeep : maximal deep of a WSN


One solution $\alpha_i = 10$

An other solution $\alpha_i = 15$

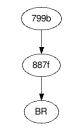
System Architecture

Implementation 6lbr & Raspberry Pi

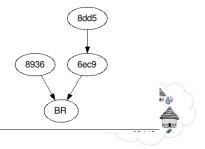
- Fork from CETIC 6lbr open source
- Multiple 6lbr : m6lbr
- Gateway on Raspberry Pi and Sky mote
- Os: Raspbian and Contiki
- Simulation 100 nodes in 3 WSN
- Real deployment with 2 gateways, 5 nodes and 2

Simulation Cooja

3 separate WSN



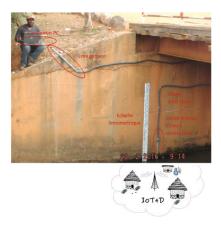
Multiple 6lbr Web interface


Node tree

6LBR 6Lowpan Border Router				
	10 20			
	Sensors			
	Node tre	e PRR		

Node tree

(日)


 Sac

2018 goals A real project

IRD works


- Deployement of WSN to monitor water of Méfou
 - rain volumetry
 - water level
 - water temperature
 - water conductivity
- 6 monitored sites
- Manual data gathering

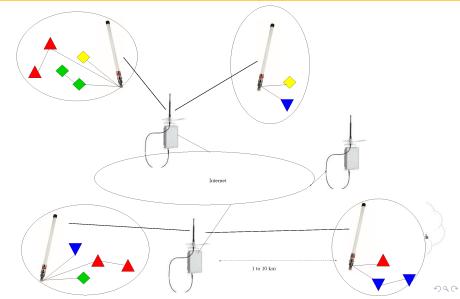
< 🗇 ▶

Map

20/23

IoT Backbone

Data collect automatisation


- limits human intervention
- increase accuracy, data volume
- Openness and extendability
- Each site
 - WSN_{temp}, WSN_{hydro}, ...
 - throughputs, frequencies
 - one gateway
 - for WSNs
 - long range communication
- Connected network
 - connected and powered gateways
 - geographical coverage

Long distance communication

・ロト ・ 同ト ・ ヨト

Wireless IoT Backbone LoRa technology

- Models gateways to gateways
- Study technologies
 - Raspberry / LoRa connection
 - WSN gateway
- Collaboration with IRD
 - french IRD researcher at Yaoundé for 2 years
 - existing relation with Yaoundé assistant prof.

- ▲ 伊 ▶ - ▲ 臣