Building scientific computing capacities is an asset for development

Mohamed JAOUA

Computing

Computers capacities are rising sharp

TeraFlops = a million billions Flop/s

Computing

Computers capacities are rising sharp

TeraFlops = a million billions Flop/s

While costs are crushing

The MB memory is 1,3 million times cheaper than it was 30 years ago

Computing

Computers capacities are rising sharp

TeraFlops = a million billions Flop/s

While costs are crushing

The MB memory is 1,3 million times cheaper than it was 30 years ago

Has become a key tool in industrial applications

7

Has become a key tool in industrial applications

Starting from the high tech ones

8

Has become a key tool in industrial applications

Starting from the high tech ones

Has become a key tool in industrial applications

Starting from the high tech ones

Has become a key tool in industrial applications

- Starting from the high tech ones
- Then migrating to every single one

Has become a key tool in industrial applications

- Starting from the high tech ones
- Then migrating to every single one

Has become a key tool in industrial applications

- Starting from the high tech ones
- Then migrating to every single one

Has become a key tool in industrial applications

- Starting from the high tech ones
- Then migrating to every single one

□ What does it need ?

- □ What does it need ?
 - Educated people

□ What does it need ?

- Educated people
- Skills in Maths and computing

What does it need ?

- Educated people
- Skills in Maths and computing
- Computers ... but they are cheap ☺

What does it need ?

- Educated people
- Skills in Maths and computing
- Computers ... but they are cheap ☺

New paradigms for development have upsurged

What does it need ?

- A properly educated population
- Skills in Maths and computing
- Computers ... but they are cheap ③

New paradigms for development have upsurged thanks to

- The digital revolution
 - Modelling has become the core
 - Targets are rapidly moving from high tech applications to every day ones
 - The digital gap is easier to bridge than the industrial one was

What does it need ?

- Educated people
- Skills in Maths and computing
- Computers ... but they are cheap ③

New paradigms for development have upsurged thanks to

- The digital revolution
 - Modelling has become the core
 - Targets are rapidly moving from high tech applications to every day ones
 - The digital gap is easier to bridge than the industrial one was
 - The globalization
 - Industrial production is no longer local
 - Technologies needs to be processed in any place at their current level

What does it need ?

- Educated people
- Skills in Maths and computing
- Computers ... but they are cheap ③

New paradigms for development have upsurged thanks to

- The digital revolution
- The globalization

□ Which gives a second chance to DCs

- Required skills are equally new for all
- And a new deal : those who master the bases can compete, the game is open

VERSITÉ FRANCAISE D'ÉGYPT

24

Manufacturing a muffler is quite simple a process,

Manufacturing a muffler is quite simple a process, needing

- Metallic sheets
- Machines to profile them and manufacture various sections and dimensions pipes
- Machines to perforate and join the pipes to each other

Manufacturing a muffler is quite a simple process, needing

- Metallic sheets
- Machines to profile them and manufacture various sections and dimensions pipes
- Machines to perforate and join the pipes to each other

Quite a different story when it comes to their acoustic optimization design

- A complex design inside
- Goal : reflect the acoustic waves and not let them spread outside

Manufacturing a muffler is quite simple a process, needing

- Metallic sheets
- Machines to profile them and manufacture various sections and dimensions pipes
- Machines to perforate and join the pipes to each other

Quite a different story when it comes to their acoustic optimization design

- A complex design inside
- Goal : reflect the acoustic waves and not let them spread outside
- Copy and paste is not the solution unless your clients are the car constructors ...

Manufacturing a muffler is quite simple a process, needing

- Metallic sheets
- Machines to profile them and manufacture various sections and dimensions pipes
- Machines to perforate and join the pipes to each other

Quite a different story when it comes to their acoustic optimization design

- A complex design inside
- Goal : reflect the acoustic waves and not let them spread outside
- Copy and paste is not the solution unless your clients are the car constructors ...
- Which is unlikely if the only commands you master are « copy » and « paste »

Outlet

Perforations

Designing a muffler the traditional way

Use a (simple) plane waves model

Designing a muffler the traditional way

- Use a (simple) plane waves model
- Make a prototype and test it on the bench

Designing a muffler the traditional way

- Use a (simple) plane waves model
- Make a prototype and test it on the bench
- Back to 1 if results don't meet expectations

Designing a muffler the traditional way

- Use a (simple) plane waves model
- Make a prototype and test it on the bench
- Back to 1 if results don't meet expectations

The drawbacks

- Accuracy is far beneath requirements
- Every iteration needs days if not weeks
- Finally, forget about the market deadlines since cars are not designed that slowly

Designing a muffler the traditional way

- Set a (simple) plane waves model
- Make a prototype and test it on the bench
- Back to 1 if results don't meet expectations

The drawbacks

- Accuracy is far beneath requirements
- Every iteration needs days if not weeks
- Finally, forget about the market deadlines since cars are not designed that slowly

What should be done instead

 Use mathematical and numerical models : PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.

- Set a (simple) plane waves model
- Make a prototype and test it on the bench
- Back to 1 if results don't meet expectations

□ The drawbacks

- Accuracy is far beneath requirements
- Every iteration needs days if not weeks
- Finally, forget about the market deadlines since cars are not designed that slowly

What should be done instead

- Use mathematical and numerical models : PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.
- Set up a digital test bench : a computation would need only hours, if not minutes

Designing a muffler the traditional way

- Set a (simple) plane waves model
- Make a prototype and test it on the bench
- Back to 1 if results don't meet expectations

The drawbacks

- Accuracy is far beneath requirements
- Every iteration needs days if not weeks
- Finally, forget about the market deadlines since cars are not designed that slowly

What should be done instead

- Use mathematical and numerical models : PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.
- Set up a digital test bench : a computation would need only hours, if not minutes
- Only when satisfied, manufacture the prototype and go to test it on the bench

3

What made things work

1. An eager to compete industrial company

What made the engine go

1. An eager to compete industrial company

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate

Saint Louis du Sénégal, May 2015

Building capacities in numerical modelling ...

□ **1983-2003 : The ENIT-LAMSIN**

- A « built from scratch » Applied Math laboratory
 - □ Relying on a serious mathematical background however
- **80** researchers : 30 PhDs,12 Professors, dozens of PhD students
- Fine publication records in international journals
- Master and Doctoral School in Applied Maths
- Gained an regional role, and an international recognition
 - UNESCO Chair « Maths and development » awarded 2002
 - AUF regional Excellence Pole (2003)
 - Research teams associated to INRIA and CNRS
- An indeed international place
 - Collaborative research on mutual interest topics
 - Co-advised PhD theses
 - Conferences and networks (TamTam, PICOF, CARI, Lirima)

Priorities : Research vs Education ?

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities
- □ Scarcity of resources :

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities
- □ Scarcity of resources : Push away the borders

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities

□ Scarcity of resources : Push away the borders

- Regional groupments
 - Maghreb, Africa, EuroMediterranean
- Maximal international openings bring
 - Expertise, structure, legitimacy ... and N/S complementarities

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities

□ Scarcity of resources : Push away the borders

- Regional groupments
 - Maghreb, Africa, EuroMediterranean
- Maximal international opening brings
 - **Expertise, structure, legitimacy ... and N/S complementarities**

Jealously preserve scientific independence

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities

□ Scarcity of resources : Push away the borders

- Regional groupments
 - Maghreb, Africa, EuroMediterranean
- Maximal international opening brings
 - **Expertise, structure, legitimacy ... and N/S complementarities**

Jealously preserve scientific independence

- However a global policy is crucial
- In Tunisia, 1996 has been the turning point

- Priorities : Research vs Education ?
 - Gather together the research skills : A single national lab for research ... but
 - Researchers are spread over Universities

□ Scarcity of resources : Push away the borders

- Regional groupments
 - Maghreb, Africa, EuroMediterranean
- Maximal international opening brings
 - **Expertise, structure, legitimacy ... and N/S complementarities**

Jealously preserve scientific independence

- However a global policy is crucial
- In Tunisia, 1996 has been the turning point

And finally, better have a little bit luck S

□ How to deal with thematic transfers ?

Focus on the methods acquisition

- Focus on the methods acquisition
- Relevance to local applications would come later
- IT boom, and methods migration, have helped

- Focus on the methods acquisition
- Relevance to local applications would come later
- IT boom, and methods migration, have helped
- □ Can brain drain be opposed in an open world ?

- Focus on the methods acquisition
- Relevance to local applications would come later
- IT boom, and methods migration, have helped
- □ Can brain drain be opposed in an open world ?
 - Make your place a nice one to work and live in
 - Train more than they can pick

- How to deal with thematic transfers ?
 - Focus on the methods acquisition
 - Relevance to local applications would come later
 - IT boom, and methods migration, have helped
- □ Can brain drain be opposed in an open world ?
 - Make your place a nice one to work and live in
 - Train more than they can pick
 - Make globalization a chance to that respect
 - North and South are finally on the same boat
 - Brain gain vs brain drain

- □ How to deal with thematic transfers ?
 - Focus on the methods acquisition
 - Relevance to local applications would come later
 - IT boom, and methods migration, have helped
- □ Can brain drain be opposed in an open world ?
 - Make your place a nice one to work and live in
 - Train more than they can pick
 - Make globalization a chance to that respect
 - North and South are finally on the same boat
 - Brain gain vs brain drain
- □ Governance is a crucial issue for the future
 - Scientists should make the scientific decisions
 - Capacities buiding need « sustainable » scientists, broad vision politicians, and overall a social control

Thank you for your attention ...

Saint Louis du Sénégal, May 2015