Building scientific computing capacities is an asset for development

Mohamed JAOUA

Computing
Computing

- Computers capacities are rising sharp
 - TeraFlops = a million billions Flop/s
Computing

- Computers capacities are rising sharp
 - TeraFlops = a million billions Flop/s

- While costs are crushing
 - The MB memory is 1.3 million times cheaper than it was 30 years ago
Computing

- Computers capacities are rising sharp
 - TeraFlops = a million billions Flop/s

- While costs are crushing
 - The MB memory is 1.3 million times cheaper than it was 30 years ago
Numerical simulation
Numerical simulation

- Has become a key tool in industrial applications
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
 - Then migrating to every single one

Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
 - Then migrating to every single one
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
 - Then migrating to every single one
Numerical simulation

- Has become a key tool in industrial applications
 - Starting from the high tech ones
 - Then migrating to every single one
Is this new economy fit for DC?
Is this new economy fit for DC?

- What does it need?
Is this new economy fit for DC?

- What does it need?
 - Educated people
Is the new economy fit for DC?

- What does it need?
 - Educated people
 - Skills in Maths and computing
Is this new economy fit for DC?

- What does it need?
 - Educated people
 - Skills in Maths and computing
 - Computers ... but they are cheap 😊
Is this new economy fit for DC?

What does it need?
- Educated people
- Skills in Maths and computing
- Computers ... but they are cheap 😊

New paradigms for development have upsurged
Is this new economy fit for DC?

- **What does it need?**
 - A properly educated population
 - Skills in Maths and computing
 - Computers ... but they are cheap😊

- **New paradigms for development have upsurged thanks to**
 - The digital revolution
 - Modelling has become the core
 - Targets are rapidly moving from high tech applications to every day ones
 - The digital gap is easier to bridge than the industrial one was
Is this new economy fit for DC?

- What does it need?
 - Educated people
 - Skills in Maths and computing
 - Computers ... but they are cheap 😊

- New paradigms for development have upsurged thanks to
 - The digital revolution
 - Modelling has become the core
 - Targets are rapidly moving from high tech applications to every day ones
 - The digital gap is easier to bridge than the industrial one was
 - The globalization
 - Industrial production is no longer local
 - Technologies needs to be processed in any place at their current level

Is this new economy fit for DC?

- What does it need?
 - Educated people
 - Skills in Maths and computing
 - Computers ... but they are cheap 😊

- New paradigms for development have upsurged thanks to
 - The digital revolution
 - The globalization

- Which gives a second chance to DCs
 - Required skills are equally new for all
 - And a new deal: those who master the bases can compete, the game is open

Can a DC really compete?
A mufflers story ...
Can a DC really compete?
A mufflers story ...

- Manufacturing a muffler is quite simple a process,
Can a DC really compete?
A mufflers story ...

- Manufacturing a muffler is quite simple a process, needing
 - Metallic sheets
 - Machines to profile them and manufacture various sections and dimensions pipes
 - Machines to perforate and join the pipes to each other
Can a DC really compete?
A mufflers story …

- Manufacturing a muffler is quite a simple process, needing
 - Metallic sheets
 - Machines to profile them and manufacture various sections and dimensions pipes
 - Machines to perforate and join the pipes to each other

- Quite a different story when it comes to their acoustic optimization design
 - A complex design inside
 - Goal: reflect the acoustic waves and not let them spread outside
Can a DC really compete? A mufflers story ...

- Manufacturing a muffler is quite simple a process, needing
 - Metallic sheets
 - Machines to profile them and manufacture various sections and dimensions pipes
 - Machines to perforate and join the pipes to each other

- Quite a different story when it comes to their acoustic optimization design
 - A complex design inside
 - Goal: reflect the acoustic waves and not let them spread outside
 - Copy and paste is not the solution unless your clients are the car constructors ...

Can a DC really compete?
A mufflers story …

- Manufacturing a muffler is quite simple a process, needing
 - Metallic sheets
 - Machines to profile them and manufacture various sections and dimensions pipes
 - Machines to perforate and join the pipes to each other

- Quite a different story when it comes to their acoustic optimization design
 - A complex design inside
 - Goal: reflect the acoustic waves and not let them spread outside
 - Copy and paste is not the solution unless your clients are the car constructors …
 - Which is unlikely if the only commands you master are « copy » and « paste »
Can a DC compete?
The mufflers story ... continued

- Designing a muffler the traditional way
 - Use a (simple) plane waves model
Can a DC compete?
The mufflers story … continued

- Designing a muffler the traditional way
 - Use a (simple) plane waves model
 - Make a prototype and test it on the bench
Can a DC compete?
The mufflers story ... continued

☐ Designing a muffler the traditional way
 - Use a (simple) plane waves model
 - Make a prototype and test it on the bench
 - Back to 1 if results don’t meet expectations

Can a DC compete? The mufflers story ... continued

- Designing a muffler the traditional way
 - Use a (simple) plane waves model
 - Make a prototype and test it on the bench
 - Back to 1 if results don’t meet expectations

- The drawbacks
 - Accuracy is far beneath requirements
 - Every iteration needs days if not weeks
 - Finally, forget about the market deadlines since cars are not designed that slowly
Can a DC compete?
The mufflers story … continued

- **Designing a muffler the traditional way**
 - Set a (simple) plane waves model
 - Make a prototype and test it on the bench
 - Back to 1 if results don’t meet expectations

- **The drawbacks**
 - Accuracy is far beneath requirements
 - Every iteration needs days if not weeks
 - Finally, forget about the market deadlines since cars are not designed that slowly

- **What should be done instead**
 - Use mathematical and numerical models: PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.
Can a DC compete?
The mufflers story … continued

- Designing a muffler the traditional way
 - Set a (simple) plane waves model
 - Make a prototype and test it on the bench
 - Back to 1 if results don’t meet expectations

- The drawbacks
 - Accuracy is far beneath requirements
 - Every iteration needs days if not weeks
 - Finally, forget about the market deadlines since cars are not designed that slowly

- What should be done instead
 - Use mathematical and numerical models: PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.
 - Set up a digital test bench: a computation would need only hours, if not minutes
Can a DC compete?
The mufflers story … continued

- Designing a muffler the traditional way
 - Set a (simple) plane waves model
 - Make a prototype and test it on the bench
 - Back to 1 if results don’t meet expectations

- The drawbacks
 - Accuracy is far beneath requirements
 - Every iteration needs days if not weeks
 - Finally, forget about the market deadlines since cars are not designed that slowly

- What should be done instead
 - Use mathematical and numerical models: PDEs (Helmholtz eqns in infinite domains), boundary conditions, BIE & FEM, etc.
 - Set up a digital test bench: a computation would need only hours, if not minutes
 - Only when satisfied, manufacture the prototype and go to test it on the bench

Can a DC compete?
... a tunisian experience
Can a DC compete?
… a tunisian experience

What made things work
Can a DC compete?
... a tunisian experience

What made things work

1. An eager to compete industrial company
Can a DC compete?
... a tunisian experience

What made the engine go

1. An eager to compete industrial company

Can a DC compete?
... a tunisian experience

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate
Can a DC compete?
... a tunisian experience

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate
Can a DC compete?
... a tunisian experience

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate
Can a DC compete?
... a tunisian experience

What made the engine go

1. An eager to compete industrial company

2. Well trained engineers, able to learn and innovate

3. Already available skills in numerical modelling
Building capacities in numerical modelling ...

1983-2003: The ENIT-LAMSIN

- A « built from scratch » Applied Math laboratory
- Relying on a serious mathematical background however
- 80 researchers: 30 PhDs, 12 Professors, dozens of PhD students
- Fine publication records in international journals
- Master and Doctoral School in Applied Maths

Gained an regional role, and an international recognition

- UNESCO Chair « Maths and development » - awarded 2002
- Research teams associated to INRIA and CNRS

An indeed international place

- Collaborative research on mutual interest topics
- Co-advised PhD theses
- Conferences and networks (TamTam, PICOF, CARI, Lirima)
Capacities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
Capacities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities
Capacities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities

- Scarcity of resources:
Capabilities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities
- Scarcity of resources: Push away the borders
Capacities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities

- Scarcity of resources: Push away the borders
 - Regional groupments
 - Maghreb, Africa, EuroMediterranean
 - Maximal international openings bring
 - Expertise, structure, legitimacy ... and N/S complementarities
Capacities building:
Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities

- Scarcity of resources: Push away the borders
 - Regional groupments
 - Maghreb, Africa, EuroMediterranean
 - Maximal international opening brings
 - Expertise, structure, legitimacy ... and N/S complementarities

- Jealously preserve scientific independence
Capacities building:
Elements of an heuristic strategy

- **Priorities: Research vs Education?**
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities

- **Scarcity of resources: Push away the borders**
 - Regional groupments
 - Maghreb, Africa, EuroMediterranean
 - Maximal international opening brings
 - Expertise, structure, legitimacy ... and N/S complementarities

- **Jealously preserve scientific independence**
 - However a global policy is crucial
 - In Tunisia, 1996 has been the turning point

Capacities building: Elements of an heuristic strategy

- Priorities: Research vs Education?
 - Gather together the research skills: A single national lab for research ... but
 - Researchers are spread over Universities

- Scarcity of resources: Push away the borders
 - Regional groupments
 - Maghreb, Africa, EuroMediterranean
 - Maximal international opening brings
 - Expertise, structure, legitimacy ... and N/S complementarities

- Jealously preserve scientific independence
 - However a global policy is crucial
 - In Tunisia, 1996 has been the turning point

- And finally, better have a little bit luck 😊
A couple of lessons we learnt

☐ How to deal with thematic transfers?
A couple of lessons we learnt

- **How to deal with thematic transfers?**
 - Focus on the methods acquisition
A couple of lessons we learnt

- How to deal with thematic transfers?
 - Focus on the methods acquisition
 - Relevance to local applications would come later
 - IT boom, and methods migration, have helped
A couple of lessons we learnt

☐ How to deal with thematic transfers?
 - Focus on the methods acquisition
 - Relevance to local applications would come later
 - IT boom, and methods migration, have helped

☐ Can brain drain be opposed in an open world?
A couple of lessons we learnt

☐ How to deal with thematic transfers?
 - Focus on the methods acquisition
 - Relevance to local applications would come later
 - IT boom, and methods migration, have helped

☐ Can brain drain be opposed in an open world?
 - Make your place a nice one to work and live in
 - Train more than they can pick
A couple of lessons we learnt

☐ How to deal with thematic transfers?
 ■ Focus on the methods acquisition
 ■ Relevance to local applications would come later
 ■ IT boom, and methods migration, have helped

☐ Can brain drain be opposed in an open world?
 ■ Make your place a nice one to work and live in
 ■ Train more than they can pick
 ■ Make globalization a chance to that respect
 ☐ North and South are finally on the same boat
 ☐ Brain gain vs brain drain

A couple of lessons we learnt

☐ How to deal with thematic transfers?
 ▪ Focus on the methods acquisition
 ▪ Relevance to local applications would come later
 ▪ IT boom, and methods migration, have helped

☐ Can brain drain be opposed in an open world?
 ▪ Make your place a nice one to work and live in
 ▪ Train more than they can pick
 ▪ Make globalization a chance to that respect
 ☐ North and South are finally on the same boat
 ☐ Brain gain vs brain drain

☐ Governance is a crucial issue for the future
 ▪ Scientists should make the scientific decisions
 ▪ Capacities building need « sustainable » scientists, broad vision politicians, and overall a social control

Thank you for your attention ...